
On the origins of blockchains

 Sergio Rajsbaum
Instituto de Matemáticas

UNAM, Mexico

École Polytechnique
22 October 2023

technology motivates systems require principles

What are blockchains?

Musée des Arts et
Métiers in Paris

• Since its opened its doors in 1802, has been in the same
building from 1060 by King Henry I

Exhibit of 2500 objects

• the first mechanical calculator

Many of the objects are
computing objects

Pascal's Pascaline
1652

Automatic cryptograph
Alexis Kohl, 1889

Some are crypto objects

By 1911 Proust had a pair of wires
trailing into a headset to hear live
music.

Théâtrophone
1889

Many others are communication objects

What about interaction of objects ?

computer +
communication =

computer +
communication =

What about interaction of objects ?

The blockchain creature is a
kind of universal computing
machine

• Running on top of many computers
• Always accessible
• Un-killable

But accountable, temper-proof

But accountable, temper-proof

A distributed state machine
• Receives a sequence of commands
• Successively changes state
• returning a response to each one

The history of executed
commands can be examined by
anybody

And it is temper-proof

How to build it ?!
And control it, understand it…

a tale of the past 60 years!

How to build it ?!
And control it, understand it…

starting in the early 1960’s

Distributed
computing

≠
sequential computing

A few milestones
focusing on the origins, DC biased

conceptual

from
different areas

scientific

technological

A few milestones
focusing on the origins, DC biased

algorithmic

technological

conceptual

from
different areas

scientific

‣ multicore, concurrency
‣ networking

algorithmic

technological

conceptual

from
different areas

scientific

‣ multicore, concurrency
‣ networking

‣ cypto
‣ databases
‣ distributed computing

algorithmic

technological

conceptual

from
different areas

scientific algorithmic

‣ multicore, concurrency
‣ networking

‣ cypto
‣ databases
‣ distributed computing

‣ FT consensus
‣ leader election
‣ 2-phase commit
‣ efficient crypto

‣ transactions
‣ consensus
‣ signatures
‣ synchronous vs asynchronous

technological

conceptual

from
different areas

scientific

‣ multicore, concurrency
‣ networking

‣ cypto
‣ databases
‣ distributed computing

‣ transactions
‣ consensus
‣ signatures
‣ synchronous vs asynchronous

‣ how many faults
‣ impossibilities
‣ topology

‣ FT consensus
‣ leader election
‣ 2-phase commit
‣ efficient crypto

algorithmic

A few milestones
starting when ??
- still, some of the main notions go
back many years

Ledger from 1828 in Germany

New Kingdon XVIII Dynasty
https://www.sciencephoto.com/media/140538/view/ancient-egyptian-scribes

electromechanical calculator 1927
https://www.technikum29.de/en/computer/electro-mechanical.php

https://www.technikum29.de/en/computer/electro-mechanical.php

A few milestones

• Notaries: 2500 B.C. in Ancient Egypt

• Ledgers: 1500 or earlier in churches

• Fault tolerance: 1940s, 50s, 60s

starting when ??
- still, some of the main notions go
back many years

Ledger from 1828 in Germany

New Kingdon XVIII Dynasty
https://www.sciencephoto.com/media/140538/view/ancient-egyptian-scribes

electromechanical calculator 1927
https://www.technikum29.de/en/computer/electro-mechanical.php

https://www.technikum29.de/en/computer/electro-mechanical.php

A few milestones

• Notaries: 2500 B.C. in Ancient Egypt

• Ledgers: 1500 or earlier in churches

• Fault tolerance: 1940s, 50s, 60s

starting when ??
- still, some of the main notions go
back many years

Ledger from 1828 in Germany

New Kingdon XVIII Dynasty
https://www.sciencephoto.com/media/140538/view/ancient-egyptian-scribes

The first computers made of relays
and tubes, which were noted for a lack
of reliability. Thus, a large effort was expended in the area
of computer checking and self-repair.

Carter and Bouricius 1971
Namely: a backup computer waiting to run in case the main one fails

electromechanical calculator 1927
https://www.technikum29.de/en/computer/electro-mechanical.php

https://www.technikum29.de/en/computer/electro-mechanical.php

A few milestones (CS and Eng)
1961 concurrent computing Atlas computer
1965 Mutual exclusion Dijkstra
1971 wide-area packet-switched network Arpanet
1974, 1975 Distributed databases: timestamps

Central sequence generator
Johnson and Beeler
Steve Bunch

1975 Impossibility of agreement Stony Brook System by Akkoyunlu ,
Ekanadham, Huber

1976 Transactions and concurrency control Eswaran, Gray, Lorie, Traiger

1976 Primary-Backup for fault-tolerance Alsberg and Day
1976 Public key crypto Diffie, Hellman
1978 Digital signatures Rabin
1978 State machine replication Lamport
1978 Byzantine agreement SIFT aircraft control
1978 3n+1 processors are needed to tolerate n Byzantine

faults, and consensus definition
Lamport, Pease, Shostak

1979 Merkle trees Ralph Merkle

1982 Consensus synchronous lower bound Fischer, Lynch

1983 Consensus impossibility: crashes Fischer, Lynch, Paterson

1983 Approximate agreement Dolev, Lynch et al

1990 Sharing Memory Robustly in Message-Passing Systems Attiya, Bar Noy, Dolev

1990 crypto timestaps, Haber, Stornetta

1993 Topology Herlihy, Shavit et al

2008 Bitcoin, blockchain Nakamoto

Atlas, the most powerful
computer in the world

1960’s-70s

1961 supercomputers:
programs began to run concurrently

1965 mutual exclusion

• By the end of the 1960s a crisis was emerging:
programs were riddled with errors

• 1965 Dijkstra discovered mutual exclusion

• opened the way for the first books of
principles on concurrent programming

:
• First not resilient:

- 1974 timestamping updates by the host that generates it and
then applying in them in that order [Johnson and Beeler]

- 1975 a central sequence generator [Steve Bunch]

• Resiliency:
- 1976 with the primary-backup approach for resiliency by

[Alsberg and Day]

1970s
origins of distributed databases

The world's first packet switched network,
ARPANET

included FTP, Email, rlogin, and one of the first to
implement the TCP/IP

1971 Packet switched networks

Packet switched networks generated a great
deal of work in distributed resource sharing

1970s
origins of distributed computing

1975 Design and implementation of the Stony Brook
[Akkoyunlu , Ekanadham, Huber]

• System aimed at building a flexible communication
facility between processes

[1975 Akkoyunlu , Ekanadham, Huber]

Gangsters divided in two groups are about to pull off
a big Job.

[1975 Akkoyunlu , Ekanadham, Huber]

Gangsters divided in two groups are about to pull off
a big Job.

 Some of the men are holed up in a warehouse across
town, awaiting precise instructions.

[1975 Akkoyunlu , Ekanadham, Huber]

Gangsters divided in two groups are about to pull off
a big Job.

 Some of the men are holed up in a warehouse across
town, awaiting precise instructions.

It is absolutely essential that the two groups act with
complete reliance on each other in executing the
plan.

[1975 Akkoyunlu , Ekanadham, Huber]

First Impossibility Result

 Of course, they will never get around to putting the
plan into action, because

… simultaneity cannot he achieved by this means.

[1975 Akkoyunlu , Ekanadham, Huber]

There was no clear understanding of how
many faults could be tolerated

A sequence of papers by Lamport et al initiated
the science of distributed computing

1978 “SIFT software implemented
fault tolerance”

[Wensley, Lamport, Goldberg, Green, Levitt, Melliar-Smith,
Shostak, Weinstock]

it was generally assumed that “tasks are
redundantly executed by 3 computers, thus a
single failure can be tolerated, using voting”

1978 first formal step

Reaching Agreement in the Presence of
Faults [Lamport, Pease, Shostak]

Today “ byzantine generals problem”
motivated by the SIFT project

Lamport, Pease, Shostak 1978

 shows that "Byzantine" faults, can defeat any

traditional 3-processor algorithm.
 > 3n+1 processors are needed to tolerate n faults.

if digital signatures are used, 2n+1 processors are
enough.

• More generally distributed computing is of a
topological nature in 1993

First abstractions: consensus, coordination
First impossibility results: are of a topological nature

Whenever need to ensure that to actions
happen or non

 Back to [1975 Akkoyunlu , Ekanadham, Huber]

and its proof

Coordination is needed all over

• In computer networking, e.g. TCP can't guarantee
state consistency between endpoints

• Transactions: if an automatic teller dispenses
cash, then the account balance is debited and
vice-versa

• A key concept in epistemic logic, common
knowledge.

• generalizations provide a base of realistic
expectations for our modern distributed systems.

Coordination is needed all over

A basic illustration of the role of
topology when computers interact

Impossibility of coordination and a
basic illustration of the role of

topology when computers interact

Alice and Bob want to schedule a meeting

If both attend, good, if only one attends, bad

Evolution
meet at
noon

meet at
dawn

Evolution
meet at
noon

meet at
dawn

Evolution
meet at
noon

meet at
dawn

Topology implies
impossibility

No number of successfully delivered acks will
be enough,

because the graph of possible states gets
longer, but remains connected

And then the generality

Herlihy, Shavit’s Theorem 1993

opened the way to characterizations of the
problems that are solvable in other models

• t – crash resilient, Byzantine, dependent failures

opened the way to characterizations of the
problems that are solvable in other models

• t – crash resilient, Byzantine, dependent failures
• Message passing and shared memory, including

powerful shared memory objects such as test&set

opened the way to characterizations of the
problems that are solvable in other models

• t – crash resilient, Byzantine, dependent failures
• Message passing and shared memory, including

powerful shared memory objects such as test&set
• Synchronous and partially synchronous systems

opened the way to characterizations of the
problems that are solvable in other models

• t – crash resilient, Byzantine, dependent failures
• Message passing and shared memory, including

powerful shared memory objects such as test&set
• Synchronous and partially synchronous systems
• Distributed monitoring

opened the way to characterizations of the
problems that are solvable in other models

• t – crash resilient, Byzantine, dependent failures
• Message passing and shared memory, including

powerful shared memory objects such as test&set
• Synchronous and partially synchronous systems
• Distributed monitoring
• Robot algorithms

opened the way to characterizations of the
problems that are solvable in other models

• t – crash resilient, Byzantine, dependent failures
• Message passing and shared memory, including

powerful shared memory objects such as test&set
• Synchronous and partially synchronous systems
• Distributed monitoring
• Robot algorithms

And connection with formal methods: distributed
specifications, epistemic logic and knowlegde

opened the way to characterizations of the
problems that are solvable in other models

Foundation to the field

technological

conceptual

from
different areas

scientific

‣ multicore, concurrency
‣ networking

‣ cypto
‣ databases
‣ distributed computing

‣ transactions
‣ consensus
‣ signatures
‣ synchronous vs asynchronous

‣ how many faults
‣ impossibilities
‣ topology

‣ FT consensus
‣ leader election
‣ 2-phase commit
‣ efficient crypto

algorithmic

Foundation to the field

1993 main result of BG, HS, SZ :

• Weakest form of interaction (wait-free)
preserves a topological invariant:

1993 main result of BG, HS, SZ :

• Weakest form of interaction (wait-free)
preserves a topological invariant:

• “computing preserves the initial topology,
a contractible space remains contractible ”

1993 main result of BG, HS, SZ :

• Weakest form of interaction (wait-free)
preserves a topological invariant:

• “computing preserves the initial topology,
a contractible space remains contractible ”

– No holes (of any dimension)

1993 main result of BG, HS, SZ :

• Weakest form of interaction (wait-free)
preserves a topological invariant:

• “computing preserves the initial topology,
a contractible space remains contractible ”

– No holes (of any dimension)

1993 main result of BG, HS, SZ :

A scientific underlying
topological framework

Initial states for binary consensus

0

0
01

1

Initial states for binary consensus

0 Processes: blue, red,
orange.

0
01

1

Initial states for binary consensus

0 Processes: blue, red,
orange.
Independently assign 0
or 1

0
01

1

Initial states for binary consensus

0 Processes: blue, red,
orange.
Independently assign 0
or 1
Isomorphic to 2-sphere

0
01

1

Initial states for binary consensus

0 Processes: blue, red,
orange.
Independently assign 0
or 1
Isomorphic to 2-sphere
This is the input complex

0
01

1

States after 1 round, starting in the
initial states for consensus

0

0
01

1

States after 1 round, starting in the
initial states for consensus

0 Running an
asynchronously the

0
01

1

States after 1 round, starting in the
initial states for consensus

0 Running an
asynchronously the
topology of the input
complex is preserved

0
01

1

Synchronous Model

In t-resilient computation, t >1 there
are holes, but do not change their
type with the number of runs

In synchronous computation yes…

Synchronous protocol complex evolution

zero

two

one

Synchronous protocol complex evolution

zero

two

one

Connected but
not 1-connected

Synchronous protocol complex evolution

zero

two

one

Connected but
not 1-connected

Disconnected

Problem solvability is undecidable

Problem solvability is undecidable

For a distributed computing model, is there
an algorithm solving a given problem?

Problem solvability is undecidable

For a distributed computing model, is there
an algorithm solving a given problem?

➢ Not in most models

Problem solvability is undecidable

By reduction to a classic topology problem:
can a given loop be contracted in a complex?

For a distributed computing model, is there
an algorithm solving a given problem?

➢ Not in most models

Problem solvability is undecidable

By reduction to a classic topology problem:
can a given loop be contracted in a complex?

For a distributed computing model, is there
an algorithm solving a given problem?

➢ Not in most models

Problem solvability is undecidable

By reduction to a classic topology problem:
can a given loop be contracted in a complex?

For a distributed computing model, is there
an algorithm solving a given problem?

➢ Not in most models

Contractibility is undecidable

not contractible

contractible

contractible

Conclusions

It all started in 1970’s with…

When it became clear that computers were going to
be flying commercial aircraft,

It all started in 1970’s with…

When it became clear that computers were going to
be flying commercial aircraft,

NASA began funding research to figure out how to
make them reliable enough for the task.

Part of that effort was the SIFT project at SRI.
 Lamport

It all started in 1970’s with…

Over the years, I often wondered whether the people
who actually build airplanes know about the
problem of Byzantine failures.

Over the years, I often wondered whether the people
who actually build airplanes know about the
problem of Byzantine failures.

… in the late 80s and early 90s, the people at
Boeing working on military aircraft and on the
space station, and the people at McDonnell-
Douglas, did not understand the problem.

Over the years, I often wondered whether the people
who actually build airplanes know about the
problem of Byzantine failures.

… in the late 80s and early 90s, the people at
Boeing working on military aircraft and on the
space station, and the people at McDonnell-
Douglas, did not understand the problem.

 Lamport

We have come a long way since the time
distributed systems were being built
without understanding what exactly
the problem being solved was, and
which failures were tolerated

Distributed computing is different from
sequential computing

It is a matter of
perspectives,
of course But perspectives can be

complicated, they
can evolve and they can

depend on the environment

Rashomon, Kurosawa 1950

END
Thanks for your attention

