
The story of Cairo

September 2023

1

Henri Lieutaud
https://github.com/starknet-edu | @henrlihenrli 

https://twitter.com/StarkWareLtd?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor


What is provable code anyway?



3

STARK proofs

You know what could be cool?

If I had a 1 million degree polynomial; and I 
could prove to you that I know 1 million values of 
X where it goes to 0; but you wouldn’t have to 
calculate the polynomial on each of the 1 million 
points, so you like, save time



4

STARK proofs

You know what could be cool?

If I had a 1 million degree polynomial; and I 
could prove to you that I know 1 million values of 
X where it goes to 0; but you wouldn’t have to 
calculate the polynomial on each of the 1 million 
points, so you like, save time



STARK is a family of cryptographic proof systems that 
can be used for privacy and scalability

STARK proves statements, saying that a computation 
was executed correctly

Examples for provable statements:

● The 1000th number in the Fibonacci sequence is X.
● I have 100 signed bank transactions that are valid.

Verification time is exponentially smaller than naive 
computation.

STARK proofs

5



The internet -> Cloud computing -> Distributed 
computing

Distributed computing is a major step in our collective 
capacity to process information

This process currently relies on trust, relations and 
intermediaires

Computational proof do to code execution what 
blockchains to do value transfers

Why this matters

6



This is much, much bigger than the blockchain industry

ZK rollups are one application of provable code

Industries get started where there is a lack of offering 
for niche users

The only ecosystem paranoid enough to require 
computational proofs is the blockchain space (and for 
good reason)

Why this matters

7



How was Cairo created?



9

Relying on Stark proofs for provable computation means 
that your code is expressed in the form of polynomials

Finding the right polynomials for your program is a time 
consuming, and requires specific skills

How Cairo was born



We can make a parallel to designing computer chips

ASIC are specialized, fast, expensive to make and very 
hard to design.

CPUs are general, slower, cheaper and easier to program 
for. A single architecture for multiple purposes.

Efficiency vs Flexibility

How Cairo was born

10



● Designing the trace: 
○ How many columns?
○ Assign a meaning to trace cells (i.e. X4i represent the transfer amount of transaction i)

● Adding constraints:
○ Only polynomial constraints of low degree.

● Manual optimizations.
○ How to measure efficiency?

■ Trace space (number of cells) - Prover time and memory
■ Constraint size - Verifier time

● Not ideal for complex statements
○ This gets very complex very fast

Step 1: Building STARKs manually (ASIC)



● Visualizer
● Components abstraction

○ How to make general purpose AIRs that can be connected into other AIRs?

Step 2: Tools for creating STARKS (FPGA)



● Use a higher level language to generate trace and constraints
○ Why? More similar to programming. Flexible.

● Drawbacks compared to real programming:
○ No memory
○ Branching is expensive - both branches use trace space
○ No recursion / general loops. Only constant size loops

■ Not Turing complete
■ All iterations take trace space

○ STARKs can handle a variable number of instances by repeating the basic block
■ Not all programs are repetitive in nature
■ For example, executing transactions and then compressing all the outputs

○
○
○

Step 3: DSLs for AIRs (GPU)



● One AIR, One verifier.

● StarkWare’s CPU AIR implementation. Cairo stands for CpuAIR (O).

● Universal Machine. Turing complete. Von Neumann

● Pay (with trace cells) only for what actually ran

● Complex non repetitive logic (conditionals / recursion)

● Efficient
○ In a real world application, the cairo version with exact same logic was about 20-30% more 

expensive compared to the handwritten AIR version.
○ With logical optimizations enabled by Cairo, was actually cheaper!

Step 4: Cairo - CPU Air



Cairo Assembly
(CASM)

High level language (easier to learn)

Syntax inspired by Rust (strongly typed)

Compiles to Sierra

Safe Intermediate Representation

Even if a program fail a proof is generated

Sequencers are ALWAYS compensated

Step 5 - Cairo language
Cairo 1.0

Smart Contract

Validity Proof

always

Safe Intermediate 
Representation

(Sierra)



How do we use it 



The blockchain paradox
Bitcoin was launched in 2008, Ethereum in 2015.

Why so slow, compared to banks, credit cards, Alipay?



 Trusted Party
(e.g., Banks) 

=
Delegated 

Accountability

Trust central party/auditor



Verify, Don’t Trust

Verify (all transactions), don’t trust

Blockchains
=

Inclusive 
Accountability



Blockchains
=

Inclusive 
Accountability

Sacrifice Privacy & Scalability

Verify (all transactions), don’t trust



Validity proofs in blockchain 

networks



Validity Proofs
(StarkNet, zkSync)

Big computer to generate proof
Expensive, semi inclusive (~mining) Fast, inclusive

Smol computer to verify proof

ZK-STARK proof



StarkNet’s Architecture

Ethereum

Fact 
Registry

fact
Verifier

proof

StarkNet 
Core

state diff

Prover
(SHARP)

execution traceSequencer
(StarkNet OS)

tx

tx

tx

Full Node

indexer

pending block



Combines the power of provable 
execution with the transparency of an 
open ledger

Execution, proof generation and proof 
verification as a service open to anyone

Relies on rock solid Ethereum for 
security and availability

Execute once, verify everywhere

Summary
Why StarkNet?



Thanks!

September 2023

25

@henrlihenrli 

Henri Lieutaud

StarkNet edu newsletter

https://twitter.com/StarkWareLtd?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor

