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How to design blockchain-based financial markets?

Dominant model: Constant Function Automated Market Makers

Characterized by its liquidity reserves X (e.g., ETH) and Y (e.g., USDC) and its invariant
function f (., .) : R×R→ R.

There is a swap proposed: purchase x ETH from the AMM in exchange for y USDC.

accept iff
f (X ,Y ) = f (X −x ,Y + y)

The invariant function must satisfy path-independence

Most common invariant function: the product ⇒ p(x) = y/x = Y /(X −x)
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Constant Product Automated Market Maker
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Constant Product Automated Market Maker
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p(x): average price for x ETH

−p′(x)

p′(x): marginal price after trading x ETH

p′(x) ̸= p(x)
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Problem with Constant function AMM: (1) Arbitrage Profits (aka
Loss-vs-rebalancing, aka LVR)

The equilibrium price of ETH (in USDC) is
determined on Binance. Initially, it is p′ and is
equal to the AMM marginal price.

The equilibrium price increases to p′′.
Arbitrageurs rebalance the AMM until its
marginal price equals p′′

The average price for the rebalancing trade is
less than p′′ → the first arbitrageur reaching
the AMM makes a profit (at the expense of
the LP)

Defensive mechanism: fees

ETH

USDC

−p′
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Problem with Constant Function AMM: (2) Sandwich attacks

Fact (1): reordering of transactions is possible

Fact (2): by default, pending transactions are public

If someone sends a transaction to purchase x ETH from an AMM. An attacker can:

front run the victim with the same trade (also buy ETH) → increase the price of ETH

back run the victim with the opposite trade (sell ETH)

⇒ the attacker buys cheap and sells expensive; the victim buys expensive
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Our paper: batching trades (and designing the AMM around this) solves
both problems

All trades are collected off-chain and batched:
▶ they are settled p2p if possible; the remaining is settled on an AMM (at the same price)
▶ the AMM can be accessed only via the batch

No need to satisfy path independence: It is possible to design a “Function Maximizing”
automated market maker (FM-AMM)

Theory : if there is a large external trading venue (where the price is determined) and
arbitrageurs, FM-AMM always trades at the equilibrium price

▶ Arb profits (LVR) and sandwich attacks are eliminated

Empirical exercise: Using price data, we compare returns to providing liquidity to Uniswap
v3 to a simulated FM-AMM with no noise traders

⇒ they are very similar.
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The Function Maximizing AMM (FM-AMM) with product function

FM-AMM is a price-taking agent that trades to maximize the product of its liquidity reserves
subject to a budget constraint:

xFM−AMM(p) = argmaxx {(X −x)(Y +p ·x)} .

xFM−AMM(p) =
1

2

(
X − Y

p

)
.

Hence, to purchase x ETH on the FM-AMM, the price needs to be:

pFM−AMM(x) =
Y

X −2x
.
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The FM-AMM “moves up the curve”

ETH

USDC

Y

X

FM-AMM is clearing-price consistent:
the price at which it trades equals the
marginal price after the trade

FM-AMM violates path independence: it
can be exploited by splitting trades →
batching is necessary
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Theoretical model: FM-AMM in equilibrium

An FM-AMM and a large off-chain trading venue where the equilibrium price p∗ is
determined

Noise traders trading on the FM-AMM, price-taking arbitrageurs trading both on
FM-AMM and the large off-chain trading venue

Time is discrete:
▶ Even periods = different block (on-chain transaction occurs)
▶ Odd periods (off-chain events):

(1) the equilibrium price is determined in the large off-chain venue;
(2) traders submit orders for inclusion in the batch (to be executed in the next even period)

FM-AMM charges no fee for inclusion in a batch, and a fee τ (in the input token) for
settling an order on the FM-AMM
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Theoretical model: FM-AMM in equilibrium

Proposition:

Suppose that, at the end of an even period, the reserves of the FM-AMM are X and Y . In the
equilibrium of the subsequent odd period, after p∗ is realized, if noise traders collectively
submit trade A to the batch, then arbitrageurs will collectively submit trade y(p∗) such that

p̃(A+ y(p∗),τ) = p∗

where p̃(A+ y(p∗),τ) is the FM-AMM effective price (i.e., price after fees).

No losses to arbitrageurs (no LVR)

No sandwich attack

p∗ determines the rebalancing trade, which determines the fees earned
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Theoretical model: FM-AMM, CFAMM and risk

CFAMM FM-AMM

AMM function

Value of reserves
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Empirical exercise

Collect price data from Binance (October 2022 to March 2023) for ETH−USDT ,
BTC −USDT , BTC −ETH.

Use the proposition to simulate how arbitrageurs would rebalance FM-AMM (had it
existed) and hence the return providing liquidity to an FM-AMM.

Compute the return of liquidity providers on Uniswap v3 (the leading AMM) over the
same period for the pools WETH-USDT (with fee 0.05%), WBTC-USDT (with fee
0.3%), and WBTC-WETH (with fee 0.05%).

▶ we use data on the distribution of liquidity at the end of each block and the total fees earned
during that block

Compare the two.
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FM-AMM vs Uniswap v3 pool
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FM-AMM vs Uniswap v3 pool

difference in the total return is: -0.22% (for the ETH-USDT pair), 0.03% (for the
BTC-USDT pair) and 0.11% (for the ETH-BTC pair).

maximum difference in value between the two liquidity positions (expressed in percentage
of the initial liquidity position) is 0.30% (for the ETH-USDT pair), 0.14% (for the
BTC-USDT pair) and 0.12% (for the ETH-BTC pair).

The differences in returns are small.
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Conclusions

Batching allows for a novel AMM design that eliminates arbitrageurs’ profits (LVR) and
sandwich attacks.

(for the period and the token pair we consider) for liquidity providers, an FM-AMM that
does not earn fees from noise traders performs as well as Uniswap v3

▶ An FM-AMM that also earns fees from noise traders should perform better
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Thank you!


