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1. Introduction
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Automated Market Makers (AMM)

• AMMs are decentralized protocols in which
• 2 or more assets are maintained as reserves
• Liquidity Providers (LPs) deposits liquidity in reserves assets
• Liquidity Takers (LTs) can swap reserve assets against
• Prices are determined by a pricing rules : CFMM
• No counterparty risk

• We analyze AMMs from the point of view of LPs
• All CFMMs are subject to impermanent loss :

• If assets prices are different when a LP enters and exists the pool, she
will incur a loss

• Trading fees are meant to overcome this loss
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Our contribution

1. Explore AMMs in which the pricing function uses some information
from another trading venue
=⇒ quite similar to the situation of a traditional market maker in
dealer markets

2. Build in this paper a simple mean-variance framework inspired from
the so-called modern portfolio theory, in order to compare different
AMMs

3. Estimate the maximum extra return that a LP could expect for a given
level of tracking error with respect to Hodl
=⇒ efficient market making strategies
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Literature Review

• CPMM : Angeris, Kao, Chiang, Noyes and Chitra (2019), Clark (2020),
Clark (2021)

• CFMM : Angeris and Chitra (2020), Angeris, Evans and Chitra (2021)
• LPs return : Angeris, Evans and Chitra (2020), Evans (2020)
• General AMM :

• Optimal fees : Angeris Evans and Chitra (2021), Fritsch, Kaser and
Wattenhofer (2022), Hasbrouck, Rivera and Saleh (2022)

• Strategic LPs : Aoyagi (2020), Cartea, Drissi and Monga (2022),
Neuder, Rao, Moroz and Parkes (2021)

• Execution : Angeris, Evans, Chitra and Boyd (2022), Cartea, Drissi
and Monga (2022), Park (2022)

• Competition : Aoyagi and Ito (2021), Lehar and Parlour (2021), Bar-
bon and Ranaldo (2022)

• Market Making : Ho and Stoll (1981), Ho and Stoll (1983), Avel-
laneda and Stoikov (2008), Guéant, Lehalle and Fernandez-Tapia
(2013), Cartea, Jaimungal and Ricci (2014)
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2. Efficient pricing functions
in the perfect information

case
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The model

• We consider a pool of 2 assets.
•
(
q0
t

)
t
and

(
q1
t

)
t
: reserves in currency 0 and currency 1 in the pool

• We assume the exogenous exchange rate, St , to follow a GBM

dSt = µStdt + σStdWt

• Transaction sizes are labelled in the accounting currency (currency 0)

• A part corresponding to the market exchange rate
• A part corresponding to a markup, accounted in currency 0

Example
If a client wants to sell z coins of currency 0 at time t, then z/St coins of
currency 1 will be offered to her and zδ0,1(t, z) extra coins of currency 0
will be asked as a markup
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The model

Admissible markups
The markups

(
δ0,1, δ1,0

)
belong to

A :=

{
δ =

(
δ0,1, δ1,0) : Ω× [0,T ]× R∗+ 7→ R2

∣∣∣∣δ is P ⊗ B(R∗+)-measurable

and δ0,1(t, z) ∧ δ1,0(t, z) ≥ −C P⊗ dt ⊗ dz a.e.

}

Markups process and reserves

dXt =

∫
z∈R∗

+

zδ0,1(t, z)J0,1(dt, dz) +

∫
z∈R∗

+

zδ1,0(t, z)J1,0(dt, dz)

dq0
t =

∫
z∈R∗

+

z
(
J0,1(dt,dz)−J1,0(dt,dz)

)
and dq1

t =

∫
z∈R∗

+

z

St

(
J1,0(dt,dz)−J0,1(dt,dz)

)
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The model

Transaction processes
The processes J0,1(dt, dz) and J1,0(dt, dz) have known intensity kernels
given respectively by (ν0,1

t (dz))t∈R+ and (ν1,0
t (dz))t∈R+ , verifying

ν0,1
t (dz) = Λ0,1 (z , δ0,1(t, z)

)
1{q1

t−≥
z
St
}m(dz)

and
ν1,0
t (dz) = Λ1,0 (z , δ1,0(t, z)

)
1{q0

t−≥z}m(dz),

where m is a measure and Λ0,1 and Λ1,0 are called the intensity functions
of the processes J0,1(dt, dz) and J1,0(dt, dz) respectively

Example

Λ0,1(z , δ) =
λ0,1(z)

1 + eα0,1(z)+β0,1(z)δ
and Λ1,0(z , δ) =

λ1,0(z)

1 + eα1,0(z)+β1,0(z)δ
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Comparison with Hodl - Excess reserves

We introduce the following two processes(
Y 0
t

)
t∈R+

=
(
(q0

t − q0
0)
)
t∈R+

and
(
Y 1
t

)
t∈R+

=
(
(q1

t − q1
0)St

)
t∈R+

with dynamics

dY 0
t =

∫
z∈R∗

+

z
(
J0,1(dt, dz)− J1,0(dt, dz)

)
and

dY 1
t = µY 1

t dt + σY 1
t dWt +

∫
z∈R∗

+

z
(
J1,0(dt, dz)− J0,1(dt, dz)

)
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Comparison with Hodl - Excess PnL

• The excess PnL is defined by the markups process and the terminal
excess reserves.

PnLT − PnLHodl
T = XT + Y 0

T + Y 1
T

=

∫ T

0

∫
z∈R∗

+

zδ0,1(t, z)J0,1(dt, dz)+

∫ T

0

∫
z∈R∗

+

zδ1,0(t, z)J1,0(dt, dz)

+

∫ T

0
µY 1

t dt +

∫ T

0
σY 1

t dWt
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A mean-variance analysis

Market simulator
• Currency 0: USD, Currency 1: ETH
• Initial exchange rate: 1600 USD per ETH
• Drift: µ = 0 day−1

• Volatility: σ = 0.052 day−1 (it corresponds to an annualized volatility
of 100%)

• Single transaction size: 4000 USD (i.e. m is a Dirac mass)
• Parameters of intensity functions: λ0,1 = λ1,0 = 100 day−1, α0,1 =
α1,0 = −1.8, β0,1 = β1,0 = 1300 bps−1

• Initial inventory: 2, 000, 000 USD and 1, 250 ETH
• Time horizon: T = 0.5 day
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Constant markups vs CPMM
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Statistics of excess PnL (in USD) after 0.5 day for different LP strategies

Figure: In blue: naive strategies with constant δ0,1, δ1,0 (the numbers next to
the points correspond to the value of δ0,1 and δ1,0 in bps). In light green:
CPMM with transaction fees (the numbers next to the points correspond to the
transaction fees in bps).
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Optimal Strategies
• Derive the optimal quote under perfect information
• Optimizing the “Mean-quadratic-variation” => with γ the risk aver-

sion coefficient

Objective function

sup
(δ0,1,δ1,0)∈A

E

[ T∫
0

{∫
z∈R∗

+

(
zδ0,1(t, z)Λ0,1(z , δ0,1(t, z))1{q1

t−≥
z
St
}

+zδ1,0(t, z)Λ1,0(z , δ1,0(t, z))1{q0
t−≥z}

)
m(dz) + µY 1

t −
γ

2
σ2(Y 1

t )2

}
dt

]

Remark
4 state variables =⇒ numerically intractable
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Optimal Strategies
• For moderate values of µ, the quadratic penalty provides an incentive

to keep the composition of the pool close to the initial one
• The no-depletion constraints (the indicator functions) can be regarded

as superflous

Approximation

sup
(δ0,1,δ1,0)∈A

E

[ T∫
0

{∫
z∈R∗

+

(
zδ0,1(t, z)Λ0,1(z , δ0,1(t, z))

+zδ1,0(t, z)Λ1,0(z , δ1,0(t, z))
)
m(dz) + µY 1

t −
γ

2
σ2(Y 1

t )2

}
dt

]

Remark
Only one state variable, Y 1, with Markovian dynamics =⇒ tractable

• It is indeed numerically verified that the reserves remain positive
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An optimization problem

HJB equation


0 = ∂tθ(t, y) + µy(1 + ∂yθ(t, y))− γ

2σ
2y2 + 1

2σ
2y2∂2

yyθ(t, y)

+

∫
R∗

+

(
zH0,1

(
z , θ(t,y)−θ(t,y−z)z

)
+zH1,0

(
z , θ(t,y)−θ(t,y+z)

z

))
m(dz)

θ(T , y) = 0

Hamiltonian functions

H0,1(z , p) = sup
δ≥−C

Λ0,1(z , δ)(δ−p) and H1,0(z , p) = sup
δ≥−C

Λ1,0(z , δ)(δ−p)
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An optimization problem

Optimal controls
The supremum in the definition of H i,j(z , p) is reached at a unique δ̄i,j(z , p)
given by

δ̄i,j(z , p) = (Λi,j)−1 (z ,−∂pH i,j(z , p)
)

The markups that maximize our modified objective function are obtained
in the following form

δ0,1∗(t, z) = δ̄0,1
(
z ,
θ(t,Y 1

t−)− θ(t,Y 1
t− − z)

z

)
and

δ1,0∗(t, z) = δ̄1,0
(
z ,
θ(t,Y 1

t−)− θ(t,Y 1
t− + z)

z

)
.
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Efficient frontier
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Figure: In blue: naive strategies with constant δ0,1, δ1,0. In grey: CPMM with fees.
In pink: other CFMM without market exchange rate, for different sets of realistic pa-
rameters. In purple (?): CFMM with market exchange rate oracle. In green: efficient
frontier, obtained using the optimal markups for different levels of risk aversion.
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3. Misspecification, partial
information and arbitrages
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Misspecification

• We evaluate the performance of the optimal quotes if the model pa-
rameters differs from the expected one

• 3 main parameters to evaluate :
• The drift : µ
• The volatility : σ
• The liquidity parameters : λi,j

• In the HJB, there is a relationship between σ, λi,j and γ, so that a
shift in σ or λi,j correspond to a shift in γ
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Misspecification: λi ,j
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Figure: Performance of strategies in terms of mean / standard deviation of excess
PnL when λ0,1 = λ1,0 = 100 day−1. In green: efficient frontier, obtained with the
efficient strategy for different levels of risk aversion with perfect information. In pink:
performance of the misspecified strategy obtained with λ0,1 = λ1,0 = 50 day−1 for
different levels of risk aversion.
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Misspecification: σ
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Figure: Performance of strategies in terms of mean / standard deviation of excess PnL
when σ = 1 year−1. In green: efficient frontier, obtained with the efficient strategy for
different levels of risk aversion with perfect information. In pink: performance of the
misspecified strategy obtained with σ = 1.2 year−1 for different levels of risk aversion.
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Misspecification: µ
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Figure: Performance of strategies in terms of mean / standard deviation of excess PnL
when µ = 0. In green: efficient frontier, obtained with the efficient strategy for different
levels of risk aversion with perfect information. In pink: performance of the misspecified
strategy obtained with µ = 0.4 year−1 for different levels of risk aversion.
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Partial information

Oracles
• Main limitation of the model: the market exchange rate is assumed

to be known at all time
• In practice, we can feed a smart contract with external data through

an oracle, but this can only be done at discrete times
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Partial information
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Figure: Performance of the efficient strategies in terms of mean / standard deviation
of excess PnL, obtained by playing the efficient strategies for different levels of risk
aversion with different oracle delays: perfect information (in green), 10 seconds delay
(in yellow), 30 seconds delay (in blue), 1 minute delay (in purple), 5 minutes delay (in
pink), 30 minutes delay (in red).
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Arbitrage

• Partial information regarding the market exchange rate can sometimes
result in arbitrage opportunities for LTs

• Already taken into account in the demand curves modeled by the
intensity functions, though not in a systematic way: if a price appears
to be very good for LTs, the probability that a transaction occurs is
very high

• In practice however, there exists a category of agents, called ar-
bitrageurs, who systematically exploit arbitrage opportunities: they
trade with the AMM until arbitrage opportunities disappear
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Arbitrages
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Figure: In green: efficient frontier, obtained by playing the optimal strategy for different
levels of risk aversion with perfect information. In yellow: performance of the same
optimal strategy for different levels of risk aversion with a discrete oracle. In orange:
performance of the same optimal strategy for different levels of risk aversion with a
discrete oracle and with arbitrage flow.
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Arbitrages

0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030 0.00035
Standard deviation of excess PnL (in USD) after 0.5 day

0.00010

0.00005

0.00000

0.00005

M
ea

n 
of

 e
xc

es
s P

nL
 (i

n 
US

D)
 a

fte
r 0

.5
 d

ay

a

b
c

d

e

22
26

18

10

6

14

2

3e-1

1e-1

1e-4 2e-5
1e-3

1e-2

Statistics of excess PnL (in USD) after 0.5 day for different LP strategies

Figure: In grey: CPMM with fees. In pink: CFMM without market exchange
rate oracle for different sets of realistic parameters. In purple (?): CFMM with
market exchange rate oracle. In orange: performance of the efficient strategies
for different levels of risk aversion.
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4. Conclusion
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Conclusion

• Traditional CFMMs perform poorly relative to the efficient frontier
and very often exhibit negative excess PnL

• Allowing an AMM to get information about the current market ex-
change rate (through an oracle) can significantly improve performance
=⇒ significantly reduces the volatility of the excess PnL while de-
livering a positive excess PnL on average

• Introducing an oracle in the AMM design comes at the cost that the
oracle itself should be carefully designed to avoid introducing addi-
tional attack vectors
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Thank You !



Introduction Baseline model Extensions Conclusion

Automated Market Makers: Mean-Variance
Analysis of LPs Payoffs and Design of Pricing

Functions

Louis Bertucci

Institut Louis Bachelier

joint work with
Philippe Bergault4 David Bouba5 Olivier Guéant6

Blockchain@X-OMI Workshop on Blockchain and Decentralized Finance,
Paris, France

September 22nd, 2023

4University of Paris-Dauphine
5Swaap Labs
6University Paris 1 Pantheon-Sorbonne


	Introduction
	Efficient pricing functions in the perfect information case
	Misspecification, partial information and arbitrages
	Conclusion

