Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions

Louis Bertucci

Institut Louis Bachelier
joint work with
Philippe Bergault ${ }^{1} \quad$ David Bouba $^{2} \quad$ Olivier Guéant ${ }^{3}$

Blockchain@X-OMI Workshop on Blockchain and Decentralized Finance, Paris, France

September 22nd, 2023

[^0]
1. Introduction

Automated Market Makers (AMM)

- AMMs are decentralized protocols in which
- 2 or more assets are maintained as reserves
- Liquidity Providers (LPs) deposits liquidity in reserves assets
- Liquidity Takers (LTs) can swap reserve assets against
- Prices are determined by a pricing rules: CFMM
- No counterparty risk
- We analyze AMMs from the point of view of LPs
- All CFMMs are subject to impermanent loss :
- If assets prices are different when a LP enters and exists the pool, she will incur a loss
- Trading fees are meant to overcome this loss

Our contribution

1. Explore AMMs in which the pricing function uses some information from another trading venue
\Longrightarrow quite similar to the situation of a traditional market maker in dealer markets
2. Build in this paper a simple mean-variance framework inspired from the so-called modern portfolio theory, in order to compare different AMMs
3. Estimate the maximum extra return that a LP could expect for a given level of tracking error with respect to Hodl
\Longrightarrow efficient market making strategies

Literature Review

- CPMM : Angeris, Kao, Chiang, Noyes and Chitra (2019), Clark (2020), Clark (2021)
- CFMM : Angeris and Chitra (2020), Angeris, Evans and Chitra (2021)
- LPs return : Angeris, Evans and Chitra (2020), Evans (2020)
- General AMM :
- Optimal fees : Angeris Evans and Chitra (2021), Fritsch, Kaser and Wattenhofer (2022), Hasbrouck, Rivera and Saleh (2022)
- Strategic LPs : Aoyagi (2020), Cartea, Drissi and Monga (2022), Neuder, Rao, Moroz and Parkes (2021)
- Execution : Angeris, Evans, Chitra and Boyd (2022), Cartea, Drissi and Monga (2022), Park (2022)
- Competition : Aoyagi and Ito (2021), Lehar and Parlour (2021), Barbon and Ranaldo (2022)
- Market Making : Ho and Stoll (1981), Ho and Stoll (1983), Avellaneda and Stoikov (2008), Guéant, Lehalle and Fernandez-Tapia (2013), Cartea, Jaimungal and Ricci (2014)

2. Efficient pricing functions in the perfect information case

The model

- We consider a pool of 2 assets.
- $\left(q_{t}^{0}\right)_{t}$ and $\left(q_{t}^{1}\right)_{t}$: reserves in currency 0 and currency 1 in the pool
- We assume the exogenous exchange rate, S_{t}, to follow a GBM

$$
d S_{t}=\mu S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} W_{t}
$$

- Transaction sizes are labelled in the accounting currency (currency 0)
- A part corresponding to the market exchange rate
- A part corresponding to a markup, accounted in currency 0

Example

If a client wants to sell z coins of currency 0 at time t, then z / S_{t} coins of currency 1 will be offered to her and $z \delta^{0,1}(t, z)$ extra coins of currency 0 will be asked as a markup

The model

Admissible markups

The markups ($\delta^{0,1}, \delta^{1,0}$) belong to

$$
\begin{array}{r}
\mathcal{A}:=\left\{\delta=\left(\delta^{0,1}, \delta^{1,0}\right): \Omega \times[0, T] \times \mathbb{R}_{+}^{*} \mapsto \mathbb{R}^{2} \mid \delta \text { is } \mathcal{P} \otimes \mathcal{B}\left(\mathbb{R}_{+}^{*}\right)\right. \text {-measurable } \\
\text { and } \left.\delta^{0,1}(t, z) \wedge \delta^{1,0}(t, z) \geq-C \mathbb{P} \otimes d t \otimes d z \text { a.e. }\right\}
\end{array}
$$

Markups process and reserves

$$
\begin{gathered}
d X_{t}=\int_{z \in \mathbb{R}_{+}^{*}} z \delta^{0,1}(t, z) J^{0,1}(d t, d z)+\int_{z \in \mathbb{R}_{+}^{*}} z \delta^{1,0}(t, z) J^{1,0}(d t, d z) \\
d q_{t}^{0}=\int_{z \in \mathbb{R}_{+}^{*}} z\left(J^{0,1}(d t, d z)-J^{1,0}(d t, d z)\right) \text { and } d q_{t}^{1}=\int_{z \in \mathbb{R}_{+}^{*}} \frac{z}{S_{t}}\left(J^{1,0}(d t, d z)-J^{0,1}(d t, d z)\right)
\end{gathered}
$$

The model

Transaction processes

The processes $J^{0,1}(d t, d z)$ and $J^{1,0}(d t, d z)$ have known intensity kernels given respectively by $\left(\nu_{t}^{0,1}(d z)\right)_{t \in \mathbb{R}_{+}}$and $\left(\nu_{t}^{1,0}(d z)\right)_{t \in \mathbb{R}_{+}}$, verifying

$$
\nu_{t}^{0,1}(d z)=\Lambda^{0,1}\left(z, \delta^{0,1}(t, z)\right) \mathbb{1}_{\left\{q_{t-}^{1} \geq \frac{z}{S_{t}}\right\}} m(d z)
$$

and

$$
\nu_{t}^{1,0}(d z)=\Lambda^{1,0}\left(z, \delta^{1,0}(t, z)\right) \mathbb{1}_{\left\{q_{t-}^{0} \geq z\right\}} m(d z)
$$

where m is a measure and $\Lambda^{0,1}$ and $\Lambda^{1,0}$ are called the intensity functions of the processes $J^{0,1}(d t, d z)$ and $J^{1,0}(d t, d z)$ respectively

Example

$$
\Lambda^{0,1}(z, \delta)=\frac{\lambda^{0,1}(z)}{1+e^{\alpha^{0,1}(z)+\beta^{0,1}(z) \delta}} \quad \text { and } \quad \Lambda^{1,0}(z, \delta)=\frac{\lambda^{1,0}(z)}{1+e^{\alpha^{1,0}(z)+\beta^{1,0}(z) \delta}}
$$

Comparison with Hodl - Excess reserves

We introduce the following two processes

$$
\left(Y_{t}^{0}\right)_{t \in \mathbb{R}_{+}}=\left(\left(q_{t}^{0}-q_{0}^{0}\right)\right)_{t \in \mathbb{R}_{+}} \quad \text { and } \quad\left(Y_{t}^{1}\right)_{t \in \mathbb{R}_{+}}=\left(\left(q_{t}^{1}-q_{0}^{1}\right) S_{t}\right)_{t \in \mathbb{R}_{+}}
$$

with dynamics

$$
d Y_{t}^{0}=\int_{z \in \mathbb{R}_{+}^{*}} z\left(J^{0,1}(d t, d z)-J^{1,0}(d t, d z)\right)
$$

and

$$
d Y_{t}^{1}=\mu Y_{t}^{1} d t+\sigma Y_{t}^{1} d W_{t}+\int_{z \in \mathbb{R}_{+}^{*}} z\left(J^{1,0}(d t, d z)-J^{0,1}(d t, d z)\right)
$$

Comparison with Hodl - Excess PnL

- The excess PnL is defined by the markups process and the terminal excess reserves.

$$
\begin{aligned}
\operatorname{PnL}_{T}-\operatorname{PnL}_{T}^{\mathrm{Hodl}}= & X_{T}+Y_{T}^{0}+Y_{T}^{1} \\
= & \int_{0}^{T} \int_{z \in \mathbb{R}_{+}^{*}} z \delta^{0,1}(t, z) J^{0,1}(d t, d z)+\int_{0}^{T} \int_{z \in \mathbb{R}_{+}^{*}} z \delta^{1,0}(t, z) J^{1,0}(d t, d z) \\
& +\int_{0}^{T} \mu Y_{t}^{1} d t+\int_{0}^{T} \sigma Y_{t}^{1} d W_{t}
\end{aligned}
$$

A mean-variance analysis

Market simulator

- Currency 0: USD, Currency 1: ETH
- Initial exchange rate: 1600 USD per ETH
- Drift: $\mu=0$ day $^{-1}$
- Volatility: $\sigma=0.052$ day $^{-1}$ (it corresponds to an annualized volatility of 100%)
- Single transaction size: 4000 USD (i.e. m is a Dirac mass)
- Parameters of intensity functions: $\lambda^{0,1}=\lambda^{1,0}=100$ day $^{-1}, \alpha^{0,1}=$ $\alpha^{1,0}=-1.8, \beta^{0,1}=\beta^{1,0}=1300 \mathrm{bps}^{-1}$
- Initial inventory: 2, 000, 000 USD and 1,250 ETH
- Time horizon: $T=0.5$ day

Constant markups vs CPMM

Statistics of excess PnL (in USD) after 0.5 day for different LP strategies

Figure: In blue: naive strategies with constant $\delta^{0,1}, \delta^{1,0}$ (the numbers next to the points correspond to the value of $\delta^{0,1}$ and $\delta^{1,0}$ in bps). In light green: CPMM with transaction fees (the numbers next to the points correspond to the transaction fees in bps).

Optimal Strategies

- Derive the optimal quote under perfect information
- Optimizing the "Mean-quadratic-variation" $=>$ with γ the risk aversion coefficient

Objective function

$$
\begin{aligned}
& \left.\sup _{(\delta 0,1, \delta 1,0}\right) \in \mathcal{A} \\
& \mathbb{E}\left[\int _ { 0 } ^ { T } \left\{\int _ { z \in \mathbb { R } _ { + } ^ { * } } \left(z \delta^{0,1}(t, z) \Lambda^{0,1}\left(z, \delta^{0,1}(t, z)\right) \mathbb{1}_{\left\{q_{t-}^{1} \geq \frac{z}{S_{t}}\right\}}\right.\right.\right. \\
& \left.\left.\left.+z \delta^{1,0}(t, z) \Lambda^{1,0}\left(z, \delta^{1,0}(t, z)\right) \mathbb{1}_{\left\{q_{t-}^{0} \geq z\right\}}\right) m(d z)+\mu Y_{t}^{1}-\frac{\gamma}{2} \sigma^{2}\left(Y_{t}^{1}\right)^{2}\right\} d t\right]
\end{aligned}
$$

Remark

4 state variables \Longrightarrow numerically intractable

Optimal Strategies

- For moderate values of μ, the quadratic penalty provides an incentive to keep the composition of the pool close to the initial one
- The no-depletion constraints (the indicator functions) can be regarded as superflous

Approximation

$$
\begin{gathered}
\sup _{\left(\delta^{0,1}, \delta^{1,0}\right) \in \mathcal{A}} \mathbb{E}\left[\int _ { 0 } ^ { T } \left\{\int _ { z \in \mathbb { R } _ { + } ^ { * } } \left(z \delta^{0,1}(t, z) \wedge^{0,1}\left(z, \delta^{0,1}(t, z)\right)\right.\right.\right. \\
\left.\left.\left.+z \delta^{1,0}(t, z) \Lambda^{1,0}\left(z, \delta^{1,0}(t, z)\right)\right) m(d z)+\mu Y_{t}^{1}-\frac{\gamma}{2} \sigma^{2}\left(Y_{t}^{1}\right)^{2}\right\} d t\right]
\end{gathered}
$$

Remark

Only one state variable, Y^{1}, with Markovian dynamics \Longrightarrow tractable

- It is indeed numerically verified that the reserves remain positive

An optimization problem

HJB equation

$$
\begin{aligned}
& 0= \partial_{t} \theta(t, y)+\mu y\left(1+\partial_{y} \theta(t, y)\right)-\frac{\gamma}{2} \sigma^{2} y^{2}+\frac{1}{2} \sigma^{2} y^{2} \partial_{y y}^{2} \theta(t, y) \\
&+\int_{\mathbb{R}_{+}^{*}}\left(z H^{0,1}\left(z, \frac{\theta(t, y)-\theta(t, y-z)}{z}\right)+z H^{1,0}\left(z, \frac{\theta(t, y)-\theta(t, y+z)}{z}\right)\right) m(d z) \\
& \theta(T, y)=0
\end{aligned}
$$

Hamiltonian functions

$$
H^{0,1}(z, p)=\sup _{\delta \geq-C} \Lambda^{0,1}(z, \delta)(\delta-p) \text { and } H^{1,0}(z, p)=\sup _{\delta \geq-C} \Lambda^{1,0}(z, \delta)(\delta-p)
$$

An optimization problem

Optimal controls

The supremum in the definition of $H^{i, j}(z, p)$ is reached at a unique $\bar{\delta}^{i, j}(z, p)$ given by

$$
\bar{\delta}^{i, j}(z, p)=\left(\Lambda^{i, j}\right)^{-1}\left(z,-\partial_{p} H^{i, j}(z, p)\right)
$$

The markups that maximize our modified objective function are obtained in the following form

$$
\delta^{0,1 *}(t, z)=\bar{\delta}^{0,1}\left(z, \frac{\theta\left(t, Y_{t-}^{1}\right)-\theta\left(t, Y_{t-}^{1}-z\right)}{z}\right)
$$

and

$$
\delta^{1,0 *}(t, z)=\bar{\delta}^{1,0}\left(z, \frac{\theta\left(t, Y_{t-}^{1}\right)-\theta\left(t, Y_{t-}^{1}+z\right)}{z}\right) .
$$

Efficient frontier

Figure: In blue: naive strategies with constant $\delta^{0,1}, \delta^{1,0}$. In grey: CPMM with fees. In pink: other CFMM without market exchange rate, for different sets of realistic parameters. In purple (\star): CFMM with market exchange rate oracle. In green: efficient frontier, obtained using the optimal markups for different levels of risk aversion.

3. Misspecification, partial information and arbitrages

Misspecification

- We evaluate the performance of the optimal quotes if the model parameters differs from the expected one
- 3 main parameters to evaluate :
- The drift : μ
- The volatility: σ
- The liquidity parameters : $\lambda^{i, j}$
- In the HJB, there is a relationship between $\sigma, \lambda^{i, j}$ and γ, so that a shift in σ or $\lambda^{i, j}$ correspond to a shift in γ

Misspecification: $\lambda^{i, j}$

Figure: Performance of strategies in terms of mean / standard deviation of excess PnL when $\lambda^{0,1}=\lambda^{1,0}=100$ day $^{-1}$. In green: efficient frontier, obtained with the efficient strategy for different levels of risk aversion with perfect information. In pink: performance of the misspecified strategy obtained with $\lambda^{0,1}=\lambda^{1,0}=50$ day $^{-1}$ for different levels of risk aversion.

Misspecification: σ

Figure: Performance of strategies in terms of mean / standard deviation of excess PnL when $\sigma=1$ year ${ }^{-1}$. In green: efficient frontier, obtained with the efficient strategy for different levels of risk aversion with perfect information. In pink: performance of the misspecified strategy obtained with $\sigma=1.2$ year $^{-1}$ for different levels of risk aversion.

Misspecification: μ

Figure: Performance of strategies in terms of mean / standard deviation of excess PnL when $\mu=0$. In green: efficient frontier, obtained with the efficient strategy for different levels of risk aversion with perfect information. In pink: performance of the misspecified strategy obtained with $\mu=0.4$ year $^{-1}$ for different levels of risk aversion.

Partial information

Oracles

- Main limitation of the model: the market exchange rate is assumed to be known at all time
- In practice, we can feed a smart contract with external data through an oracle, but this can only be done at discrete times

Partial information

Statistics of excess PnL (in USD) after 0.5 day for different LP strategies

Figure: Performance of the efficient strategies in terms of mean / standard deviation of excess PnL, obtained by playing the efficient strategies for different levels of risk aversion with different oracle delays: perfect information (in green), 10 seconds delay (in yellow), 30 seconds delay (in blue), 1 minute delay (in purple), 5 minutes delay (in pink), 30 minutes delay (in red).

Arbitrage

- Partial information regarding the market exchange rate can sometimes result in arbitrage opportunities for LTs
- Already taken into account in the demand curves modeled by the intensity functions, though not in a systematic way: if a price appears to be very good for LTs, the probability that a transaction occurs is very high
- In practice however, there exists a category of agents, called arbitrageurs, who systematically exploit arbitrage opportunities: they trade with the AMM until arbitrage opportunities disappear

Arbitrages

Figure: In green: efficient frontier, obtained by playing the optimal strategy for different levels of risk aversion with perfect information. In yellow: performance of the same optimal strategy for different levels of risk aversion with a discrete oracle. In orange: performance of the same optimal strategy for different levels of risk aversion with a discrete oracle and with arbitrage flow.

Arbitrages

Statistics of excess PnL (in USD) after 0.5 day for different LP strategies

Figure: In grey: CPMM with fees. In pink: CFMM without market exchange rate oracle for different sets of realistic parameters. In purple ($*$): CFMM with market exchange rate oracle. In orange: performance of the efficient strategies for different levels of risk aversion.
4. Conclusion

Conclusion

- Traditional CFMMs perform poorly relative to the efficient frontier and very often exhibit negative excess PnL
- Allowing an AMM to get information about the current market exchange rate (through an oracle) can significantly improve performance \Longrightarrow significantly reduces the volatility of the excess PnL while delivering a positive excess PnL on average
- Introducing an oracle in the AMM design comes at the cost that the oracle itself should be carefully designed to avoid introducing additional attack vectors

Conclusion

Thank You!

Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions

Louis Bertucci

Institut Louis Bachelier
joint work with
Philippe Bergault ${ }^{4}$ David Bouba ${ }^{5}$ Olivier Guéant ${ }^{6}$

Blockchain@X-OMI Workshop on Blockchain and Decentralized Finance,
Paris, France

September 22nd, 2023

[^1]
[^0]: ${ }^{1}$ University of Paris-Dauphine
 ${ }^{2}$ Swaap Labs
 ${ }^{3}$ University Paris 1 Pantheon-Sorbonne

[^1]: ${ }^{4}$ University of Paris-Dauphine
 ${ }^{5}$ Swaap Labs
 ${ }^{6}$ University Paris 1 Pantheon-Sorbonne

