Sybil-proofness in Reputation-based Staking

Julien Prat, Yiyun Zheng

September 21, 2023

Initiating a network platform: in a nutshell

- Any power to the malicious parties can multiply in a large-scale peer-to-peer network, through self-replicating.
- These **Sybils**, when not distinguished from other genuine users, can benefit from an unfair weight and volume of voice to steer the big ship.

^aimage from Connext community report

Initiating a network platform: in a nutshell

• Who do we welcome when a new identity on the platform is just one click away?

Political voting

• US election voting:

- Real-name participation.
- Using an approved proof of identity.
- Cross-state voting is achievable due to poor communication between states,
- double-voting can have repercussions as being trialled for a felony in most states.

Political voting

- Low Sybil concern.
- Highly centralised solution.

- Individuals have a non-pivotal position
- costly on faking identities: certifying authority tends to have good security,
- risky due to uncertain vote revision causing a possible sentence.

• X premium(previously, the Twitter blue):

"An opt-in, paid monthly subscription that adds a blue checkmark to your account and offers early access to select new features, like Edit post." Verification requires a valid, active phone number.

A typical Web 2.0 approach that introduces some cash economics through pricing, not as restrictive as a fully-trusted certification that relies on a centralized authority.

Social media

- Lower Sybil concern.
- Less centralised solution.

- Users give away credentials
- Ont too susceptible to the Sybil attack
- Unlike the functionality of voting, being the majority does not possess all the advantages

Bio-metric proof of humanity

- Worldcoin by Sam Altman: Users are paid in their coins called 'WLD' if they proceed with a bio-metric authentication, i.e., to have their iris scanned.
- It does not rely on a central authority but the bio-metric aspect with a zero-knowledge promise failed to deliver to the audience.
- "The biggest issue is that little of what Worldcoin has done inspires confidence or trust, which should be the cornerstone of what such a company does."

High risk environment: Token airdrops

A short overview:

- **Uniswap**: 15% of the tokens were distributed among 1/4m users with proof of a one-time usage, ownership is earned by contributing liquidity and activity.
- Ampleforth, Tornado.Cash etc.: quickly followed suits with an airdrop value easily exceeding \$5000.
- Ethereum Name Service (ENS) airdropped governance token when converted to a DAO. One of the largest airdrops with tokens valued between \$250m and \$500m.

High risk environment: Token airdrops

Users are getting the wrong education to start being strategic by adopting Sybils:

Airdrops Mining

Existing solutions:

- **Transaction patterns analysis**: reminiscent of the (almost) Sybil-proofness property of Bitcoin, getting a free lunch from airdrops will cost time and resources to bypass algorithmic screenings.
- Witch-hunt program: device a new reward to provoke internal auditing using the recovered tokens.

High risk environment: Token airdrops

Users are getting the wrong education to start being strategic by adopting Sybils:

Airdrops Mining

Existing solutions:

- Transaction patterns analysis: reminiscent of the (almost) Sybil-proofness property of Bitcoin, getting a free lunch from airdrops will cost time and resources to bypass algorithmic screenings. ⇒ Not reliable. High interaction requirements may result in more active Sybils than more active authentic players.
- Witch-hunt program: device a new reward to provoke internal auditing using the recovered tokens. ⇒ 'Hunters' need to identify themselves to redeem the prize, defying the decentralisation purpose. Hurting real users.

To summaries: a process of elimination

- Sybil attacks tend to be more prevalent in distributed systems.
- Centralised and/or privacy-divulging solutions are not favoured.
- No-cost participation with *patchworks* later is also not the best way to go at it.
 - trust networks are prone to manipulation
 - 2 difficult to set a new mechanism to reward policing behaviours
- We propose the use of staking to "monetise" participation.

- Elicit an initial staking from participants who:
- can but will not walk away from the platform easily, (induced commitment)
- willing to work (tolerates disutility) to maintain the identity,
- has a low budget. (decentralisation)

Referenced literature

- Contract design in the endogenous incomplete market: Endogenised by the one-sided commitment from the platform.
- Worker moral hazard, "backloading" payoff: Lazear(1981), Harris, Hölmstrom(1982)
- Reflecting reputation using payoff: Thomas, Worrall(1988)
- Efficient risk sharing without Commitment: Kochelakota(1996)
- Recursive insurance contract Ljungqvist, Sargent (2004)

Related literature

- The reputation is individually assigned and managed.
- Without concerning network effects and reputation from ranking.
- In another stream of literature, EigenTrust (Kamvar et al.), Sybil behaviours arise because sub-graph creation yields a reputation boost. (similar to the airdrop mining that we observe today.)
- Sybil-proofness then hinges on an Asymmetric reputation resembling a federated environment: trusted and identified nodes. (Cheng, Friedman)

- Discrete time $t = 0, 1, 2, \ldots$
- Subject to an agent with an initial staking value of v_0 at time 0.
- Our control instrument is a pair of promises:
 - contract value, v_t
 - cash-out value, c_t
- The reputation is explicitly represented by the contract value.

$$c_{t+1} \le v_{t+1}, \ \forall t \ge 1. \tag{LE}$$

• Lock-in effect(LE): Always more beneficial to enjoy the contract rather than cashing out.

Primary constraints

- If we only focus on induced commitment.
- Action space of the agent : {walk away and collect c_t , stay}.
 - leave with c_t collectable.
 - stay and receive new sets of (v_{t+1}, c_{t+1}) .

$$\beta \left[(1-\delta) v_{t+1} + \delta c_{t+1} \right] \ge v_t, \tag{PK}$$

- β : discount factor of the agent.
- **Promise-keeping(PK)**: The new package always has a value exceeding the current contract value (reputation). Increasing sequence of v, because the longer they commit the more they are known to be "loyal".

• We explore the optimal design for updating the rewards, facing a trade-off between Sybil-proofness and decentralisation.

Our problem

• Platform's problem: updating the reward over time to retain the agent.

$$P(v_t) = \max_{\{c_{t+1}, v_{t+1}\}} \rho[(1-\delta)P(v_{t+1}) - \delta c_{t+1}].$$
(1)

- ρ : discount factor of the platform.
- δ : probability of the agent's heterogeneous liquidity shock, forcing a leave.
- Impatient platform 'back-loads' promises.
- $\rho < \beta \Rightarrow$ The objective function is strictly decreasing and concave.

Taking FOCs

We take the Lagrangian of the platform's problem:

$$\mathcal{L} = \rho [(1 - \delta) P(\mathbf{v}_{t+1}) - \delta c_{t+1}] + \lambda \Big\{ \beta [(1 - \delta) \mathbf{v}_{t+1} + \delta c_{t+1}] - \mathbf{v}_t \Big\} + \mu (\mathbf{v}_{t+1} - c_{t+1}).$$
(2)

Then take the First Order Conditions on v_{t+1} and c_{t+1} respectively, FOC:

$$\begin{aligned} &\Rightarrow \mu = \delta(\lambda\beta - \rho), \\ &\Rightarrow \mu = -(1 - \delta) \big[\rho P'(\mathbf{v}_{t+1}) + \lambda\beta \big], \\ &\Rightarrow \lambda > 0. \end{aligned}$$

• PK is always binding to curb the growing package value which chips away profit.

Some initial results

• The comparatively impatient platform gradually adjusts the promises in an optimal way to retain the agent.

	$s_1: riangle l=0$	$s_2: riangle I > 0$
<i>v</i> ′	$ ilde{m{ u}}'=rac{m{ u}}{eta}$	$\hat{m{v}}' = rac{m{v}}{eta} + \delta riangle I(m{v})$
<i>c</i> ′	$\widetilde{c}' = rac{{m v}}{eta}$	$\hat{c}' = rac{arphi}{eta} - (1-\delta) riangle I(arphi)$

• $\triangle I$ is the gap between (\hat{v}', \hat{c}') .

Some initial results

Theorem

In the absence of effort elicitation, when trying to produce a pair of promises to retain the agent for the next period. The profit-maximising platform is better off creating a gap between the pair (v_{t+1}, c_{t+1}) whenever the current contract value is below $\beta P'^{-1}(-1)$ while conforming to a binding PK. Otherwise, the platform sets $v_{t+1} = c_{t+1} = v_t/\beta$.

The proof is immediate if we compare the two profits generated from strategies s_1 and s_2 .

Sybil-proof during s₁

Sybil-proof between s_1 and s_2

By adopting s_1 and s_2 , the Sybil strategy is dominated when the agent splits causing a differential treatment that lowers the with-drawl value of the smaller accounts.

Julien Prat, Yiyun Zheng

Sybil-proofness in Reputation-based Staking

Require efforts to raise participation cost

$$\beta \big[(1-\delta) \mathsf{v}_{t+1} + \delta \mathsf{c}_{t+1} \big] - \mathsf{e} \ge \beta \big\{ (1-\pi) \big[(1-\delta) \mathsf{v}_{t+1} + \delta \mathsf{c}_{t+1} \big] + \pi (\mathsf{c}_{t+1} - \kappa (\mathsf{c}_{t+1})) \big\}. \quad (\mathsf{IC})$$

- *e* is the mandated effort to maintain the identity in monetary terms.
- π is the success rate of a hardwired detection system.
- $\kappa(c_{t+1})$ is an automatic subtraction from c_{t+1} when the agent is detected for shirking.

Require efforts

- A contract of current value v is said to be *feasible* if the platform is able to issue a set of promises (v', c') that deters shirking.
- Whenever the PK constraint is binding, the set of feasible contracts requires the current contract value v to be at least e/π .
- To bring down the threshold for decentralisation purposes, the platform can sacrifice part of the profit and have an expanded strategy set.

• Set
$$\mu = 0$$
 s.t. $\beta [(1 - \delta)v_{t+1} + \delta c_{t+1}] > v_t$.

Case 1: low effort requirement/high detection rate

- Sybil-proof mechanism if there is no incentive to split for an *s*₂ user to disguise as many *s*₃ users.
- Sketch proof:
 - **(1)** Under liquidity shock δ .
 - Restrictive withdrawal for all Sybils:

 - $c_t^{s_3} < c_t^{s_2} \text{ for } t \le 1, \dots, k(\alpha(v_0)), \ v_k^{s_3} = \frac{e}{\pi}.$
 - 6 Agent bears multiple efforts.
 - ∃α(v₀), k(α(v₀)), s.t. splitting into more than 1 account is inferior to entering honestly as an s₂ user.

Case 2: high effort requirement/low detection rate

- Sybil-proof if there is no incentive to split for an s_1 user to disguise as many s_3 users.
- Proof: Similar

- Online identities are only derived from their physical counterparts.
- Such Sybil attacks can have long-term structural effects to any distributed system.
- Stemming from wanting honest participation, our model captures some basic intuitions.
 - **1** Use two complementary promise instruments.
 - Ø Back-load promises.
 - Oifferent strategies needed to treat users with different commitment levels.