Al-Enhanced Security in
Decentralized Finance: Leveraging
LLMSs for Proactive Defense

Liyi Zhou
PhD student @Imperial College London

DeFi Attacks on Ethereum & BSC

{&) >181 DeFi “attacks”

@ 3.24B USD losses

N N

2018-04 2022-04

IEEE S&P 2023

https://eprint.iacr.org/2022/1773.pdf

DeFi Attacks

Total Value Locked
>$38.605b

18%

Defence in Depth

Pre-deployment

Best practices
Pre-audit!t!
Auditl2]
Transfer limits
Pause button

Post-deployment

[1] Still need an audit? — 2023
[2] Securify — 2018

[3] BlockGPT — 2023

[4] Imitation Game — 2023

[5] DeFiPoser — 2021

[6] DeFi Attack SoK — 2023
[7] Fast Forensic — 2023

Intrusion Detection!3]
Intrusion Prevention!4!
Vulnerability Searchl]
Similarity Detection!l®]

Post-incident

Fast Forensicl’]
Post Imitation

1) Pre-audit

2) BlockGPT

Pre-audit

Isaac David, Liyi Zhou, Kaihua Qin,
Dawn Song, Lorenzo Cavallaro, Arthur Gervais

What if..

Q@ preAudit.ai - your friendly & fast smart contract inspector &

Paste the smart contract code you want to pre-audit ¢

1

m By proceeding you agree to the ToS . ..

What if..

Thank you! The pre-audit evaluation started §4.
In about 5 minutes, you will receive an email with the pre-audit I .

Please keep in mind, a preAudit does not replace an audit and may
contain many false positives, we're looking forward to your feedback!

Pre-audit

Contract SuperSecure

{

Results:

Vulnerable because..

Not wvulnerable because..

4_

Reentrancy

Reentrancy definition

Results:

Vulnerable because..

Not vulnerable because..

An automated Smart Contract Review

First reviewer:

List of evaluated attacks

On-chain oracle manipulation
Reentrancy

Absence of code logic or sanity check
Inconsistent access control

Vulnerabilities found
e Inconsistent access control
Explanations

On-chain oracle manipulation.

The provided smart contract is not vulnerable to 'On-chain oracle manipulation'. The reason is simple: this contract does not use an
oracle. An oracle is an external data source, and this contract does not have any functionality that depends on any external data source.
The contract merely stores a message and allows that message to be updated. Because an oracle 1s not involved, there's no opportunity for
an attacker to manipulate an oracle to affect this contract's behavior.

Reentrancy.

The given smart contract is not vulnerable to 'Reentrancy' attack. In a 'Reentrancy' attack, an attacker takes advantage of the call to an
external contract to take control and repeatedly call a function in the original contract before it has completed. This contract does not call
any external contracts which could allow for control to be unjustifiably taken over by a malicious contract. Also, the function 'update’

10

Tested Vulnerabilities + Ground Truth

- Reentrancy
- On-chain oracle manipulation
- Absence of code logic or sanity checks

- Vulnerabilities on 4 system layers

11

Results?

Tool Name |TP|FP|FN|TN [Precision|Recall F1 Score|Accuracy
claude-v1.3-100k| 28 |576| 44 (1290 0.0464 | 0.389 | 0.0828 0.680
gpt-4-32k 15 |216| 57 |1650| 0.0649 | 0.208 | 0.0990 0.859
slither 5 |142| 68 |1723| 0.0340 |0.0685| 0.0455 0.892
oyente 0 (38|73 (1827 0.0000 [0.0000| 0.0000 0.943
confuzzius 04 |73 (1861 0.0000 [0.0000| 0.0000 0.960
mythril 1 [48 | 72 |1817| 0.0204 |0.0137| 0.0164 0.938
solhint 5 |109]| 68 (1756 0.0439 [0.0685| 0.0535 0.909

12

Considerations

. Training data

. Reproducibility

. Binary or Non-binary classification
. False Positives

. Truncation

. Context length

. Model temperature

13

Do we still need a manual audit?

Yes, for now Gd

Are the LLMs better than existing tools?

Sometimes &)

14

BlockGPT

Yu Gai*, Liyi Zhou*, Kaihua Qin,
Dawn Song, Arthur Gervais

GPT Training Pipeline

Stage

Dataset

Algorithm

Model

Raw Internet

Language modeling

predict next token

Base model
e.g., GPT

Supervised
Finetuning

Prompt-Response
pairs

Language modeling
predict next token

SFT model

L

Reward
Modeling

Comparisons

Binary Classification
predict rewards consistent
with preferences

RM model

%

Reinforcement
Learning

Prompts

Reinforcement

Learning
generate tokens that
maximize the reward

RL model
e.g., chatGPT

Contributions

Self-supervised learning for smart contract anomaly detection

BlockGPT ranks

- 20/124 as most abnormal

- 20/124 as second most abnormal
- 7/124 as third most abnormal

2k transactions/second batched throughput
can be used as Intrusion Detection System

17

Challenges of conventional ML-based IDS

. Binary classifier on labels: £ (tx) ->{Attack, Benign}
. Limited labelled attack data, attack patterns evolve

. Only <100 attacks/year

18

tx1

tx2

tx3

New tX

BlockGPT

Trace
Likelihood Estimation

Results:

log

log
log
log

p (New tx)
alarm threshold ---
p (tx2)

p (tx3)
p (tx1)

A3 TTRPUIIOUqY

19

BlockGPT Advantages

. No engineered rules, data driven.
. Can detect new attacks not covered by known rules.

. Can detect non-profitable attack transactions!

20

Threat Model

- Observable Adversary: e.g., transactions propagate on a P2P

- Hidden Adversary: e.g., colluding with a miner

21

Dataset

. 68M txs/1523 days from victim dApps

- 124 DeFi attack
- Possibly multiple attack transactions per dApp

22

BlockGPT Architecture

TX -> Tokenized Trace -> Trace Embedding -> Trace Likelihood

Minimize the causal language modeling loss via gradient descent

®

Prepare

@ Processed Trace

@Vocabulary Embedding Layer

®

Transformer Encoder

N identical layers

| Function call Trace l\ Tiny bttt S > O(Troot) ~ -----mmmmeoee- P
Blockchain A
Archive Taint Analysis
Node | X | N e ek s > SR i ',‘:'”'t(i,' adda | | Feed | | Add &
Tree ea ee
/I Opt\:vode | . o Encoding" Self » Norm ”|Forward” Norm
--------------- > T nnt B ion
| P f/ |_2 () Attention’
\| Log (Event) Trace T, panmamasmeeny > 0(T>,1) P
[A | A
= ~" 2

23

BlockGPT Results

Attacks ranked as most abnormal

_r Victim Application Damage
Victim Name Contract Categories (in USD)
Beanstalk Oxcle0..24c5 Stablecoin 181,500,000
MonoX 0x66¢e7..ee63 DEX 31,133,333
PopsicleFinance 0xd63b..3546 Yield farming 20,700,000
PrimitiveFinance 0x9dae..f2f9 Derivatives 13,000,000
PunkProtocol 0x929c¢..49d6 Others 8,950,000
VisorFinance 0xc9f2..14ef Others 8,200,000
DAOMaker 0Oxd6c8..blec Others 4,000,000
DAOMaker 0x933f..2al3 Others 4,000,000
DODO 0x051e..a2b6 DEX 3,800,000
DODO 0x509e..41fb DEX 3,800,000
CheeseBank 0x833e..743d Digital Bank 3,300,000
dydx 0x5377.ba2c Derivatives 2,211,000
RevestFinance 0xe952..1659 Others 2,005,000
BTFinance 0x3ec4..8af0 Yield farming 1,600,000
VisorFinance 0x65bc..054f Others 975,720
WildCredit 0x7b3b..cbca Lending 650,000
SharedStake 0xa231..7ef5 Others 500,000
88mph 0x2165..b0a6 Lending 100,000
Sanshulnu 0x35¢6..7810 Others 100,000
KlondikeFinance Oxacbd..e747 Synthetic assets 22,116

25

Conclusions

Self-supervised learning for anomaly detection
Detects attacks without engineered rules

High throughput

Paper: https://eprint.iacr.org/2023/592
Further details: https://rdi.berkeley.edu/

26

https://eprint.iacr.org/2023/592
https://rdi.berkeley.edu/

Thank you!

Transformer-based trace embedding

- Customized tokenization for DeFi (100k+ tokens)
93233 Ethereum addresses
6759 function signatures

- Informative low-level instructions
EVM execution logs
EVM memory read/write

- 8 layers, each self-attention + position-wise feed-forward layer
- About 1 Billion parameters

28

Tokenization Challenges

- Traces can be large

29

Tokenization: from raw trace to tokens

Raw trace as Intermediate Tree Representation (ITR)

CALL:
| from: 0x99d...
| to: 0xeb9...
| data: c4f...
| - DELEGATECALL:
| from: 0xeb9...
| to: Oxe...
| data: £39...
| - READ, 0x95c..., 0xo67a
|- LOG1l, 0x0b8..., 0x699

Tokenized trace

CALL, from, 0x99d.., to, O0xebo9..,

0x67a, LOGl, 0x0bS8.., 0x699

| | | ITR tree
Call trace I [|

: |
State trace

Log trace [|

data: c4f.. DELEGATECALL, from, 0xeb59.., to, Oxe.., data, £39.., READ, 0x95c..,

30

Dataset

Vulnerability layers

. Smart Contract (42%)
Protocol (40%)

- Auxiliary (30%)

dApp transaction activity
Minimum: 4
Maximum: 0.6M

percentage of dapps

number of transactions

31

IDS based on estimated likelihood rank

- BlockGPT estimates the log-likelihood of the traces of all
transactions involving the app

- Raises alarm for the k least likely, i.e. most abnormal
transactions.

32

Mutation Testing

Contract SuperSecure

{

}

Manually added vulnerability .

Contract SuperSecure

{

Vulnerability 1

} Ask the models

GPT-4 non-binary:

78.7% true positives

GPT

33

Chain of Thought

Contract SuperSecure

{

}

Vulnerable?

v

}

Contract SuperSecure

{

%unction x() {}

Claude.

Claude

What about function X?

Claude

=3
Claude.

34

Related Work Landscape

Assumed o Knowidge S et R Appio
Rank based — the goal is to find all unexpected execution patterns, implicitly capturing vulnerabilities
BLOCKGPT (this paper) All historical transactions Unrestricted .(0.165) o
Reward based — the goal is to extract financial revenue, implicitly capturing vulnerabilities
APE [21] N/A Only profitable patterns @(0.07s) o
Naive Imitation [6] N/A Only profitable patterns @(0.015s) L
DeFiPoser [12] DApp models Only profitable patterns @(5.93s) O

+ Limited by the DApp models

Pattern based — the goal is to match / classify predefined known vulnerability patterns with rules (including machine learning methods)

Pattern based dynamic analysis [19], [22], [23] Rule Limited by the rule o L D)
Pattern based fuzzing [24]-[29] Rule + ABI / DApp models Limited by the rule), L))
Pattern based symbolic execution [28], [30]-[40] Rule + Source code / Bytecode Limited by the rule N/A L))
Pattern based static analysis [22], [35], [41]-[48] Rule + Source code / Bytecode Limited by the rule N/A L D)
Proof based — the goal is to prove that a set of smart contracts meet specific security properties
. . Formal security properties Limited by the
Formal verification [28], [49]-[51] + Source code / DApp models security properties N/A ¢

35

Elastic Swap Attack (Dec-13-2022)

TXO - “Attacker?”

o 0 Function name: go ()
TX1 - “Attacker”
Function name: go ()
‘ 0 Propagated: P2P Network (detected at: 2022-12-13
v 02:32:43.238946+00)
TX2 - “Whitehat hacker?”
‘ Function name: NotYoink()
Y ° Built by: BeaverBuilder
Relayed by: BloXroute Max Profit (kudos to Toni 2°0ms
Wahrstatter)
‘ €@ TX3 - “Whitehat hacker?” /
! v Function name: yoink() 36
time Propagated: P2P Network (detected at: 2022-12-13

02:32:43.481679+00)

Elastic Swap Attack (Dec—-13-2022)

Whitehat hacker capabilities

{A) Bilingual
g{g - “yoink” contract for transactions on the P2P network
- “No Yoink™ for transactions through relayers

/\‘g Generalized? Front-Running
fﬁi - Mimic & front-run in 250 ms!

Bribe genius
@ - Vulnerable 523.55 ETH

- - 78.53 ETH (15% Bribe)
- - 44.50 ETH (10% bounty)

37

Transformer and Language Models

given a sequence of tokens Xy, ..., X, find its likelihood:
P(Xy, .oy X)) =7

Multi-layer neural network with self-attention

- given Xy, ..., X, generates a sequence of vectors, from
which we compute log p(xy, ..., X,)

Maximize the log-likelihood of observed sequences of
tokens: max log p(x1, ..., xn)

4 1 o,
~>| Add & Norm }
Feed
Forward

 —

Nx | —{"Add & Norm)
Mult-Head

Attention

T

_' J

PosMonaI<5;>_€>
Encoding

Input
Embedding

I

Inputs

38

Intrusion Detection with BlockGPT

. Flag the least likely a%

- Flag the least likely k%

39

BlockGPT IDS Performance

Dataset Size (the total number of transactions

Percentage Ranking Alarm Threshold (%)

Absolute Ranking Alarm Threshold

interacting with the vulnerable smart contract) | < 0.01% < 0.1% < 0.5% < 1% < 10% top-1 top-2 top-3

0 - 99 txs (32 attacks, 28% of dataset) - - . E 506%) | 7(22%) 20 (63%) 23 (72%)
Average false positive rate - - - . 8.18% 0% 14.8% 28.3%
Average number of false positives - - - - 5.1 0 1 2
100 - 999 txs (38 attacks, 33% of dataset) - . 8 21%) 12 (32%) 28 (74%) | 7 (18%) 12 (32%) 15 (39%)
Average false positive rate - - 0.24% 0.71% 9.65% 0% 0.46% 0.81%
Average number of false positives - - 1.5 3.5 394 0 1 2
1000 - 9999 txs (17 attacks, 15% of dataset) - 6 (35%) 9 (53%) 11 (65%) 13 (76%) | 4 (24%) 7 (41%) 7 (41%)
Average false positive rate - 0.054% 0.45% 0.95% 9.96% 0% 0.049% 0.098%
Average number of false positives - 1.4 11.5 23.7 324.5 0 1 2
10000 + txs (29 attacks, 25% of dataset) 2 (7%) 7 (24%) 16 (55%) 18 (62%) 21 (72%) | 2 (7%) 3 (10%) 4 (14%)
Average false positive rate 0.007% 0.097% 0.50% 1% 10% 0% 0.004% 0.008%
Average number of false positives 2.5 120.1 429.9 819.6 7302.1 0 1 2
Overall 2(2%) 13 (11%) 33 (28%) 41 (35%) 67 (58%) | 20 (17%) 42 (36%) 49 (42%)
Average false positive rate 0.007% 0.077% 0.42% 0.90% 9.71% 0% 7.19% 13.5%
Average number of false positives 2.5 65.3 211.9 367.2 2368.5 0 1 2

40

Case Study #1: Beanstalk (Observable Adv)

- Adversary borrows 1B USD

- Exchange proceeds for 67% stake in Beanstalks
- Passes vote to withdraw treasury

- Etherscan observed the transaction 30 seconds before being mined.

- Ranks the transaction as most abnormal among all beanstalk txs

41

Case Study #2: Revest (Hidden Adv)

- 4 adversarial transactions over 17 minutes
- 2M USD lost

- Mined through FaaS (Flashbots)

- Can only act as retrospective tool
- Once the first adversarial transaction is mined
- Could have prevented 3 out of the 4 transactions

42

Are attacks similar?

Bytecode Similarity Analysis

Bytecode ‘% Ngram‘ % Embedding‘

Similarity

Victim Contracts Attacker Contracts

« 100% similarity among 38 « 100% similarity among 29
= 80% similarity among 85 = 80% similarity among 73

vy
Q Adversarial and vulnerable contracts are detectable.

44

	Slide 1
	Slide 2: DeFi Attacks on Ethereum & BSC
	Slide 3: DeFi Attacks
	Slide 4: Defence in Depth
	Slide 5
	Slide 6
	Slide 7: What if..
	Slide 8: What if..
	Slide 9: Pre-audit
	Slide 10: An automated Smart Contract Review
	Slide 11: Tested Vulnerabilities + Ground Truth
	Slide 12: Results?
	Slide 13: Considerations
	Slide 14: Do we still need a manual audit?
	Slide 15
	Slide 16: GPT Training Pipeline
	Slide 17: Contributions
	Slide 18: Challenges of conventional ML-based IDS
	Slide 19: BlockGPT
	Slide 20: BlockGPT Advantages
	Slide 21: Threat Model
	Slide 22: Dataset
	Slide 23: BlockGPT Architecture
	Slide 24
	Slide 25: Attacks ranked as most abnormal
	Slide 26: Conclusions
	Slide 27
	Slide 28: Transformer-based trace embedding
	Slide 29: Tokenization Challenges
	Slide 30: Tokenization: from raw trace to tokens
	Slide 31: Dataset
	Slide 32: IDS based on estimated likelihood rank
	Slide 33: Mutation Testing
	Slide 34: Chain of Thought
	Slide 35: Related Work Landscape
	Slide 36: Elastic Swap Attack (Dec-13-2022)
	Slide 37: Elastic Swap Attack (Dec-13-2022)
	Slide 38: Transformer and Language Models
	Slide 39: Intrusion Detection with BlockGPT
	Slide 40: BlockGPT IDS Performance
	Slide 41: Case Study #1: Beanstalk (Observable Adv)
	Slide 42: Case Study #2: Revest (Hidden Adv)
	Slide 43
	Slide 44: Bytecode Similarity Analysis 🤨

