Statistical error bounds for weighted mean and median, with application to robust aggregation of cryptocurrency data

M. Allouche M. Echenim E. Gobet A-C. Maurice

Blockchain@X-OMI Workshop on Blockchain and Decentralized Finance

2023, September 21st https://hal.science/hal-04017151v1/document

Introduction

Context.

- Crypto assets are traded in a multi-fragmented market
- Kaiko's DB: 2000 assets, 6000 pairs, 100 exchanges

Introduction

Context.

- Crypto assets are traded in a multi-fragmented market
- Kaiko's DB: 2000 assets, 6000 pairs, 100 exchanges

<u>State of the art.</u> Given price and volume observations $(P_i, V_i)_{i=1}^n$

• Average Price (AP) [Vinter, 2021]

$$\frac{1}{n}\sum_{i=1}^n P_i$$

• Volume-Weighted Average Price (VWAP) [Nasdaq, 2022, FTSE Digital Asset Research, 2022]

$$\widehat{\mathrm{VWAP}}_n := \frac{\sum_{i=1}^n V_i P_i}{\sum_{i=1}^n V_i}.$$

• Volume-Weighted Median Price (VWM)

[Federal Reserve Bank of New York, 2015, CF Benchmarks, 2022, Gallagher, 2018]

$$\widehat{\mathtt{VWM}}_n := \inf \left\{ p : \frac{\sum_{i=1}^n V_i \mathbb{1}_{P_i \leq p}}{\sum_{i=1}^n V_i} \geq \frac{1}{2} \right\}.$$

Problem Statement

Challenge. Large **discrepancies** in price, volume, liquidity among the exchanges make the task of "**market consensus**" price calculation difficult

Objective.

- Study the statistical distribution of the crypto data (price/volume)
- Control the statistical fluctuations of the methods for both **small** and **large** datasets
- Propose a new challenger : Robust Weighted Median (RWM)

Data analysis - Price and Volume are heavy-tailed

- Check the tail behavior of (P, V): 67 pairs, 4 days, > 80M trades
- Heavy-tailed distributions are characterized by a survival function which decays at a rate $x^{-1/\gamma}$ as $x \to \infty$, where $\gamma > 0$ is called the **tail index**

Figure: (a): Hill plot [Hill, 1975] regarding the price returns btc/usdc on 2022-05-05. (b): Box plot of the estimated tail-index on the volumes (left), on the price returns (middle) and on the product of the two (right) for all considered pairs on 2022-05-05 (blue), 2022-06-12 (orange), 2022-06-28 (green) and 2022-12-09 (red). (c): Upper tail dependence estimator between price returns and volumes (blue), and the independence case (black dashed line) for btc/usdc on 2022-05-05. (d): Box plot of the estimated upper tail dependence for all considered pairs and periods $\frac{4}{15}$

Statistical analysis

Consider two positive r.v. P, W and the independent observations $(P_i, W_i)_{i=1}^n$ drawn from (P, W). Introduce the model and data based definitions: **c.d.f**.

$$F_{\mathsf{W}}(x) := \frac{\mathbb{E}\left[W \cdot \mathbb{1}_{P \leq x}\right]}{\mathbb{E}\left[W\right]}, \qquad \widehat{F_{\mathsf{W},\mathsf{n}}}(x) := \frac{\sum_{i=1}^{n} W_{i} \mathbb{1}_{P_{i} \leq x}}{\sum_{i=1}^{n} W_{i}}$$

Weighted Average Price.

$$WAP := \frac{\mathbb{E}[W \cdot P]}{\mathbb{E}[W]}, \qquad \widehat{WAP}_n := \frac{\sum_{i=1}^n W_i P_i}{\sum_{i=1}^n W_i}$$

Weighted Quantile.

$$q_{\mathsf{W}}(\alpha) := \inf \left\{ p : \frac{\mathbb{E}\left[W \mathbb{1}_{P \leq p} \right]}{\mathbb{E}\left[W \right]} \geq \alpha \right\}, \qquad \widehat{q_{\mathsf{W},n}}(\alpha) := \inf \left\{ p : \frac{\sum_{i=1}^{n} W_i \mathbb{1}_{P_i \leq p}}{\sum_{i=1}^{n} W_i} \geq \alpha \right\}$$

Weighted Median.

$$\mathtt{WM} := q_{\mathtt{W}}\left(rac{1}{2}
ight), \qquad \widehat{\mathtt{WM}}_n := \widehat{q_{\mathtt{W},n}}\left(rac{1}{2}
ight)$$

(H0): The c.d.f. F_W in has a density f_W :

$$F_{\mathsf{W}}(x) = \int_0^x f_{\mathsf{W}}(x') \, \mathrm{d}x'.$$

(H^κ_X): X has a finite moment of order κ > 2: E [X^κ] < +∞.
 (H^Γ_X): X has a sub-gamma distribution, i.e. E [e^{cX}] < +∞ for some c > 0.

(**H**^G_X): X has a sub-Gaussian distribution, i.e. $\mathbb{E}\left[e^{cX^2}\right] < +\infty$ for some c > 0.

Asymptotic fluctuations

Theorem

Assume (H0) with a continuous and non-vanishing density f_W at $q_W(\alpha)$, and assume (H_X^{κ}) for X = W and some $\kappa > 2$. Then

$$\sqrt{n}\left(\widehat{q_{\mathsf{W},n}}(\alpha) - q_{\mathsf{W}}(\alpha)\right) \Rightarrow \mathcal{N}\left(0, \frac{\mathbb{E}\left[W^{2}\left(\alpha - \mathbb{1}_{P \leq q(\alpha)}\right)^{2}\right]}{\left(\mathbb{E}\left[W\right] f_{\mathsf{W}}\left(q_{\mathsf{W}}(\alpha)\right)\right)^{2}}\right).$$
(1)

Assume $(\mathbf{H}_{\mathbf{X}}^{\kappa})$ for $\mathbf{X} = W$ and $\mathbf{X} = W \cdot P$ and for some $\kappa > 2$, then

$$\sqrt{n}\left(\widehat{\mathsf{WAP}}_{n} - \mathsf{WAP}\right) \Rightarrow \mathcal{N}\left(0, \frac{\mathbb{E}\left[W^{2}(\mathsf{WAP} - P)^{2}\right]}{(\mathbb{E}\left[W\right])^{2}}\right).$$
 (2)

Non-asymptotic fluctuations

$$\begin{aligned} \mathcal{Q}_n^>(\alpha, x) &:= \mathbb{P}\left(\widehat{q_{\mathtt{W},n}}(\alpha) - q_{\mathtt{W}}(\alpha) > \frac{x}{\sqrt{n}}\right), \quad \mathcal{Q}_n^\leq(\alpha, x) := \mathbb{P}\left(\widehat{q_{\mathtt{W},n}}(\alpha) - q_{\mathtt{W}}(\alpha) \le -\frac{x}{\sqrt{n}}\right), \\ \mathcal{W}_n^\geq(x) &:= \mathbb{P}\left(\widehat{\mathtt{WAP}}_n - \mathtt{WAP} \ge \frac{x}{\sqrt{n}}\right), \qquad \qquad \mathcal{W}_n^\leq(x) := \mathbb{P}\left(\widehat{\mathtt{WAP}}_n - \mathtt{WAP} \le -\frac{x}{\sqrt{n}}\right). \end{aligned}$$

Theorem (simplified)

	$\max(\mathcal{Q}_n^>(\alpha,x),\mathcal{Q}_n^\leq(\alpha,x))$	$\max(\mathcal{W}_n^{\geq}(x),\mathcal{W}_n^{\leq}(x))$
Heavy-Tail assumptions	$\frac{c}{n^{\frac{\kappa}{2}-1}x^{\kappa}} + \exp\left(-cx^{2}\right)$	$\frac{c\left(1+\frac{x}{\sqrt{n}}\right)^{\kappa}}{\frac{\kappa}{n^{\frac{\kappa}{2}}-1}x^{\kappa}}+\exp\left(-\frac{cx^{2}}{1+c\frac{x^{2}}{n}}\right)$
$(\mathbf{H}_{\mathbf{X}}^{\kappa})$ for $X = W$ and $X = W \cdot P$, for $\kappa > 2$		
Sub-gamma assumptions	$\exp\left(-\frac{cx^2}{1+c\frac{x}{\sqrt{n}}}\right)$	$\exp\left(-\frac{cx^2}{\left(1+c\frac{x}{\sqrt{n}}\right)^3}\right)$
(H0) and (H_X^{Γ}) for $X = W$ and $X = W \cdot P$		
Sub-Gaussian assumptions	$\exp\left(-cx^2\right)$	$\exp\left(-\frac{cx^2}{1+c\frac{x^2}{n}}\right)$
(H0) and (H_X^{G}) for $X = W$ and $X = W \cdot P$		

Non-asymptotic fluctuations

$$\begin{aligned} \mathcal{Q}_n^>(\alpha, x) &:= \mathbb{P}\left(\widehat{q_{\mathtt{W},n}}(\alpha) - q_{\mathtt{W}}(\alpha) > \frac{x}{\sqrt{n}}\right), \quad \mathcal{Q}_n^\leq(\alpha, x) := \mathbb{P}\left(\widehat{q_{\mathtt{W},n}}(\alpha) - q_{\mathtt{W}}(\alpha) \le -\frac{x}{\sqrt{n}}\right), \\ \mathcal{W}_n^\geq(x) &:= \mathbb{P}\left(\widehat{\mathtt{WAP}}_n - \mathtt{WAP} \ge \frac{x}{\sqrt{n}}\right), \qquad \qquad \mathcal{W}_n^\leq(x) := \mathbb{P}\left(\widehat{\mathtt{WAP}}_n - \mathtt{WAP} \le -\frac{x}{\sqrt{n}}\right). \end{aligned}$$

Theorem (simplified)

	$\max(\mathcal{Q}_n^>(\alpha,x),\mathcal{Q}_n^\leq(\alpha,x))$	$\max(\mathcal{W}_n^{\geq}(x),\mathcal{W}_n^{\leq}(x))$
Heavy-Tail assumptions	$\frac{c}{n^{\frac{\kappa}{2}-1}x^{\kappa}} + \exp\left(-cx^{2}\right)$	$\frac{c\left(1+\frac{x}{\sqrt{n}}\right)^{\kappa}}{\frac{\kappa}{n^{\frac{\kappa}{2}}-1}x^{\kappa}}+\exp\left(-\frac{cx^{2}}{1+c\frac{x^{2}}{n}}\right)$
(H^{κ}_{X}) for $X = W$ and $X = W \cdot P$, for $\kappa > 2$		
Sub-gamma assumptions	$\exp\left(-\frac{cx^2}{1+c\frac{x}{\sqrt{n}}}\right)$	$\exp\left(-\frac{cx^2}{\left(1+c\frac{x}{\sqrt{n}}\right)^3}\right)$
(H0) and (H_X^{Γ}) for $X = W$ and $X = W \cdot P$		
Sub-Gaussian assumptions	$\exp\left(-cx^2\right)$	$\exp\left(-\frac{cx^2}{1+c\frac{x^2}{n}}\right)$
(HU) and (H_X^{\vee}) for $X = W$ and $X = W \cdot P$		

 \triangleright Define RWM by setting $W = \log(1 + V/q_{0.5}(V))$ which is sub-gamma distributed

Experiments - simulated data

- Simulate an efficient price series $(S_t)_{t=1}^T$ where $S_t \sim GBM(\sigma)$
- Simulate the dependent variables (P, V) with an Archimedean copula
- At each time step t, simulate J noisy prices s.t. $\forall j \in \{1, \dots, J\}$, $\widetilde{S}_t^j = S_t(1 + r_t^j)$ where $r_t^j \sim \text{Mixt}(\omega)$.

Figure: (a)-(d): Efficient price time-series $(S_t)_{t=1}^{1440}$ (orange line) simulated with $\sigma = 0.5$ ($\sigma^{\text{eff}} = 0.51$), and its associated noisy prices $(\widehat{S}_t^i, j \in \{1, \dots, 100\})_{t=1}^{1440}$ (blue dots) with $\omega = 0.99$ (a) and $\omega = 0.7$ (d). (b)-(e): Scatter plots of the associated estimated prices $(\widehat{S}_t)_{t=1}^{100}$ ($\widehat{\text{VM}}_n$: blue, $\widehat{\text{VMA}}_n$: orange, $\widehat{\text{RM}}_n$: green) with respect to the reference price. Black dashed regression line $x \mapsto y = x$. (c)-(f): Scatter plots with log-scale axes. 9/15

Results

	RMSE ^{price}			RMSE ^{RV}		
ω	₩M _n	WAP _n	R₩M _n	₩M _n	WAP _n	RWM _n
0.99	3.0	3.7	1.3	28.1	4.8	0.02
0.95	3.1	32.2	1.4	52.5	8.5	0.02
0.90	3.2	36.4	1.5	63.0	10.4	0.02
0.80	3.5	43.8	1.6	74.7	13.0	0.03
0.70	37.9	53.0	1.8	120.6	18.1	0.03
0.60	38.2	62.9	2.1	141.7	21.1	0.04
0.50	97.8	115.5	2.5	168.3	23.7	0.06
0.40	116.3	127.7	3.0	187.1	26.1	0.09
0.30	116.5	131.4	3.9	201.31	28.25	0.14
0.20	122.6	134.0	5.5	222.5	30.9	0.26
0.10	123.0	136.0	8.2	226.1	31.9	0.51

Table: Comparison between $\widehat{\text{VWM}}_n$, $\widehat{\text{VWAP}}_n$ and $\widehat{\text{RWM}}_n$ results for different simulation scenarios with $\omega \in \{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99\}$ using two performance criteria.

Experiments - real data

(c)

(d)

Figure: (a)-(b): Comparison between $\widehat{\text{VM}}_n$ (blue), $\widehat{\text{VMAP}}_n$ (orange) and $\widehat{\text{RWM}}_n$ (green) on real data aggregation per minute of the pair eth/btc (a) and zec/btc (b) on 2022-06-28. (c): Box plot of the annualized RV (over all pairs) from $\widehat{\text{VWM}}_n$ (left), $\widehat{\text{VWAP}}_n$ (middle) and $\widehat{\text{RWM}}_n$ (right) on 2022-06-28 (blue), on 2022-06-12 (orange), on 2022-09-12 (green) and on 2022-05-05 (red). The mean is emphasized by a red triangle and outliers are discarded. d)Box plot of the annualized RV taking into account outliers with the y-axis in log-scale 15

RWM outperforms VWAP and VWM - SVB crisis

Figure: **USDC-USD** on 2023/03/11

- Provide theoretical results on both **asymptotic** and **non-asymptotic bounds** of the estimators.
- Show that VWAP and VWM suffer from instability and lack of robustness when applied to crypto data that are heavy-tailed
- Outperform other competitors in both simulated and real data

References I

CF Benchmarks (2022).

CME CF cryptocurrency reference rates, version 15.1. https://docs.cfbenchmarks.com/CME%20CF%20Reference% 20Rates%20Methodology.pdf

Federal Reserve Bank of New York (2015).

Technical note concerning the methodology for calculating the effective federal funds rate.

https://www.newyorkfed.org/medialibrary/media/markets/ EFFR-technical-note-070815.pdf.

FTSE Digital Asset Research (2022).

Guide to the calculation of the FTSE DAR Digital Asset Prices and FTSE DAR Reference Prices.

https://research.ftserussell.com/products/downloads/ Guide_to_the_Calculation_of_FTSE_DAR_Digital_Asset_ Prices_and_Reference_Prices_Fixes.pdf.

References II

Gallagher, C. (2018).

CFIX methodology, Bloomberg cryptocurrency solutions. https://data.bloomberglp.com/professional/sites/10/ CFIX-Methodology.pdf.

Hill, B. M. (1975).

A simple general approach to inference about the tail of a distribution. *Ann. Statist.*, 3(5):1163–1174.

Nasdaq (2022).

Nasdaq Crypto Index: index methodology. https://indexes.nasdaqomx.com/docs/methodology_NCI.pdf.

Vinter (2021).

Crypto reference rates for single assets, version 2.1. https://methodology.vinter.co/vinter/reference-rates.