Introduction O	Constant Product Market Makers	Model 000000	Optimal Strategy	Strategy Performance	Conclusions 00

Decentralised Finance and Automated Market Making: Execution and Speculation

Álvaro Cartea, Fayçal Drissi, Marcello Monga

Blockchain@X-OMI Workshop

21 September 2023

Motivation

- New paradigm in the design of trading venues
- Poised to challenge electronic exchanges in all asset classes

Our contributions

- New class of Optimal Execution problems
- Data analysis and backtesting on real data

Optimal Strategy

Strategy Performance

Conclusions

Constant Function Market Makers

In charge of an asset pair X and Y

Available liquidity q^{χ} and q^{γ}

Deterministic trading function $f(q^X, q^Y)$

Introduction O	Constant Product Market Makers ○●○○○	Model 000000	Optimal Strategy	Strategy Performance	Conclusions
Liquid	lity Takers				

They send a quantity y of asset Y to the CPMM to receive a quantity x of X according to the trading function

$$q^X q^Y = \left(q^X - \mathbf{x}\right) \left(q^Y + \mathbf{y}\right) = \kappa^2 ,$$

They receive

$$\mathbf{x} = \frac{\kappa^2}{q^{\mathsf{Y}}} - \frac{\kappa^2}{q^{\mathsf{Y}} + y} = \varphi\left(q^{\mathsf{Y}}\right) - \varphi\left(q^{\mathsf{Y}} + y\right)$$

For each unit of Y that they sell they receive

$$\frac{x}{y} = \frac{\varphi\left(q^{Y}\right) - \varphi\left(q^{Y} + y\right)}{y} \xrightarrow{y \to 0} -\varphi'\left(q^{Y}\right) = \frac{\kappa^{2}}{\left(q^{Y}\right)^{2}} = \frac{q^{X}}{q^{Y}} =: Z$$

Introduction O	Constant Product Market Makers	Model 000000	Optimal Strategy	Strategy Performance	Conclusions OO

Execution Costs

Execution price

$$ilde{Z}(y) = rac{arphi\left(q^{Y}
ight) - arphi\left(q^{Y} + y
ight)}{y}$$

Instantaneous rate

$$\boldsymbol{Z}=-\varphi'\left(\boldsymbol{q}^{\boldsymbol{Y}}\right)$$

Execution costs

$$\left| ilde{Z}(y) - Z
ight| pprox rac{1}{\kappa} Z^{3/2} \left|y
ight|$$

ntroduction O	Constant Product Market Makers	Model 000000	Optimal Strategy	Strategy Performance	Conclusions OO

Execution Costs

Liquidity provision condition: liquidity providers cannot change the instantaneous rate Z

Key difference from LOB markets

They change the pool size by providing liquidity in both assets and the value of κ changes

$$\frac{q^X + \mathbf{x}}{q^Y + \mathbf{y}} = \frac{q^X}{q^Y}$$

Introduction O	Constant Product Market Makers	Model •00000	Optimal Strategy	Strategy Performance	Conclusions OO
Price	Dynamics				

We consider two trading venues

Market reference price

$$dS_t = \sigma \, S_t \, dW_t \; ,$$

Price implied by the CPMM

$$dZ_t = \beta \left(S_t - Z_t\right) dt + \gamma Z_t \, dB_t$$

Introduction O	Constant Product Market Makers	Model O●OOOO	Optimal Strategy	Strategy Performance	Conclusions OO
. .	_				

troduction Constant Product Market Makers Model Optimal Strategy Strategy P 00000 00 000 00 00000000000000000000	troduction	Constant Product Market Makers	Model 000000	Optimal Strategy	Strategy Per
---	------------	--------------------------------	-----------------	------------------	--------------

Extension to multiple pairs

Figure: Exchange rates USDC/ETH and USDC/BTC in Uniswap v3 between January 2022 and June 2022.

Optimal Strategy

Strategy Performance

Conclusions 00

Optimal Execution Problem

Agent's holdings of asset Y:

$$d\tilde{y}_t = -\nu_t \, dt \; ,$$

Agent's holdings of aset X:

$$d\tilde{x}_t = \left(Z_t - \frac{\eta}{\kappa} Z_t^{3/2} \nu_t\right) \nu_t dt$$
,

Model 0000●0 Optimal Strateg

Strategy Performa

Conclusions

Constant κ Assumption

Figure: Rate and LP dynamics in AMMs.

Optimal Strategy

Strategy Performance

Conclusions

Uniswap v3 Compatibility

(a) **Top**: ETH/USDC rates on 14 April 2022 **Other plots**: Pool depth κ at different times. The red bar is the instantaneous rate.

(b) **Top**: ETH/USDC rates on 15 April 2022 **Other plots**: Pool depth κ at different times. The red bar is the instantaneous rate.

Optimization Problem

Performance criteria of strategy v:

$$u^{\nu}(t,\tilde{x},\tilde{y},Z,S) = \mathbb{E}_{t,\tilde{x},\tilde{y},Z,S}\left[\tilde{x}^{\nu}_{T} + \tilde{y}^{\nu}_{T}Z_{T} - \alpha \left(\tilde{y}^{\nu}_{T}\right)^{2} - \phi \int_{t}^{T} \left(\tilde{y}^{\nu}_{s}\right)^{2} ds\right] ,$$

Value function:

$$u(t,\tilde{x},\tilde{y},Z,S) = \sup_{\nu \in \mathcal{A}} \{ u^{\nu}(t,\tilde{x},\tilde{y},Z,S) \} .$$

Closed-form Approximation Strategy

We use stochastic control tools and approximation techniques to obtain the closed-form approximation strategy

$$\nu^{\star} = \underbrace{-\frac{\kappa}{\eta} Z^{-3/2} A(t, Z) \tilde{y}}_{\text{Execution}} + \underbrace{\frac{\kappa}{2\eta} Z^{-3/2} B(t, Z) (S - Z)}_{\text{Speculation}},$$

- A is a positive function and helps mitigating inventory risk arising from \tilde{y}
- B is a positive function and exploits difference between the reference rate S and Z

Introduction O	Constant Product Market Makers	Model 000000	Optimal Strategy	Strategy Performance	Conclusions OO
Strate	av Specifics				

- In-sample parameters calibration
- Out-of-sample testing
- Initial inventory set to 50% of the observed hourly volume
- Agent's frequency is the observed average trading frequency over the in-sample period
- Testing execution and speculation strategy

Optimal Strategy

Strategy Performance

Conclusions

Calibration of Parameters

	ETH/USDC	ETH/DAI
$\hat{\sigma}$	$0.045 \; {\rm day}^{-1/2}$	$0.053 \ {\rm day}^{-1/2}$
$\hat{\gamma}$	$0.034 \; {\rm day}^{-1/2}$	$0.027 \ {\rm day}^{-1/2}$
$\hat{\beta}$	$657.9~\mathrm{day}^{-1}$	$14.78~\mathrm{day}^{-1}$

Table: Parameter estimates for dynamics of Z and S with data between noon 15 March 2022 and noon 16 March 2022.

Optimal Strateg

Strategy Performance

Conclusions

Performance: Execution and Speculation

Figure: Liquidation strategies starting at noon on 16 March 2022.

Optimal Strategy

Strategy Performance

Conclusions 00

Performance: Execution and Speculation

(a) Final PnL distribution of strategies for ETH/USDC (3,635 executions).

(b) Final PnL distribution of strategies for ETH/DAI (607 executions).

Figure: PnL distribution.

Optimal Strateg

Strategy Performance

Conclusions 00

Performance: Execution and Speculation

	Avg.	Std.	Avg. num.	Avg.
	PnL	dev.	trades	fees
Single order	-956,298	1,963,014	1	2,538
TWAP	3,998	217,001	439	10,529
Liquidation	27,185	288,518	439	11,885

Table: Performance and fees for ETH/USDC (3,635 executions). The Average PnL does not include fees

Optimal Strateg

Strategy Performance

Conclusions

Performance: Execution and Speculation

	Avg.	Std.	Avg. num.	Avg.
	PnL	dev.	trades	fees
Single order	-233,390	428,688	1	634
TWAP	1,875	170,008	108	1,217
Liquidation	12,240	63,605	108	1,782

Table: Performance and fees for ETH/DAI (607 executions). The Average PnL does not include fees

Optimal Strategy

Strategy Performance

Conclusions

Performance: Pure Speculative Strategy

(a) Statistical arbitrage PnL distribution for ETH/USDC.

(b) Statistical arbitrage PnL distribution for ETH/DAI.

Figure: Statistical arbitrage PnL distribution.

Optimal Strategy

Strategy Performance

Conclusions

Performance: Pure Speculative Strategy

	Avg.	Std.	Avg. num.	Avg.
	PnL	dev.	trades	fees
ETH/USDC	22,693	190,789	439	7,111
ETH/DAI	20,886	54,043	108	2,082

Table: Performance and fees for the **speculative strategy** for pairs ETH/USDC (3,635 executions) and ETH/DAI (607 executions). The Average PnL does not include fees

Introduction O	Constant Product Market Makers	Model 000000	Optimal Strategy	Strategy Performance	Conclusions • O	
Conclusions						

- We used Uniswap v3 data to analyse rate, liquidity, and execution costs of CPMMs
- We introduced a model where price are formed in an alternative trading venue
- We derived an approximated optimal trading strategy in closed-form
- We back-tested our trading strategy using real data

Introduction O	Constant Product Market Makers	Model 000000	Optimal Strategy	Strategy Performance	Conclusions O

Thank you for listening!

Any questions?