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Data-Set Valuation

Data-set valuation
Quantify incremental contribution of
players by sharing their data-sets with

other players towards solving some ML task

Figure: Data-set valuation problem

- First step towards incentivise parties to share data

- Cooperative game theory fits this framework

- One of the most studied solution concept is the Shapley value
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Model - Linear regression

- Set of players I = {1, ..., I}

- Player i has a data-set

Di = {(x(j)
i , y

(j)
i )}j∈[ni]

- Linear regression

Yi = Xiθ + ηi, ηi ∼ N(0ni , ε
2
i Ini )

x
(j)
i ∼ p

(i)
X , for any j ∈ [ni], and εi ∼ pε

where θ ∈ Rd is a ground-truth parameter

Figure: Data-set valuation problem

- Value function u : 2I → R ,∀S ⊆ I,

u(S) = v({Di}i∈S)

= −E
[(
x⊤θ − x⊤θ̂S

)2
]

where θ̂S = (X⊤
S XS)−1X⊤

S YS is the maximum likelihood estimator and x ∼ ptest
X
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Shapley value

- Classical solution concept in cooperative game theory

- Average marginal contribution of player i to all subcoalitions S ⊆ I \ {i}

- Given u : 2I → R, the Shapley value of player i is

φi(u) =

1
I

∑
S⊆I\{i}

1(
I−1
|S|

)

[
u(S ∪ {i}) − u(S)

]

= 1
I!

∑
π∈Π(I)

[
u(Pπ

i ∪ {i}) − u(Pπ
i )

]
- The intractability of the Shapley value obliges to study approximation schemes

- Castro, Gómez, and Tejada (2009) proposed a Monte Carlo approximation

φ̂i(u) = 1
T

T∑
t=1

[
u(Pπt

i ∪ {i}) − u(Pπt
i )

]
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Homogeneous case

- Assumption: Take p(i)
X = pX ,∀i ∈ I

- Whenever x ∼ pX , it holds,

u(S) = −E
[(
x⊤θ − x⊤θ̂S

)2
]

= dσ2
ε

d+ 1 − nS
= w(nS)

where nS :=
∑

i∈S ni

- Having this in mind, the Shapley value can be rewritten as,

φi(u) = φi(w) = EK∼U([I−1])
[
ES∼U(2I\{i}

K
)[w(nS + ni) − w(nS)]

]
- What is the distribution of (nS)S⊆I\{i}?

5
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Homogeneous case (2)
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Figure: (left) I = 10, (middle) I = 50, (right) I = 500. 105 samples for each random
variable and a number of data points per player drawn from U([100]). n̄SK

stands for
nSK

normalised.

Theorem

Let nSK :=
∑

j∈SK
nj , where SK ∼ U(2I\{i}

K ) and K ∼ U([I − 1]). Then,

nSK∑
j∈I\{i} nj

I→∞−−−→ U([0, 1])
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Discrete Uniform Shapley

- Discrete uniform Shapley

ψi := 1
I

I−1∑
k=0

[w(kµ−i + ni) − w(kµ−i)],

µ−i := 1
I − 1

∑
j∈I\{i}

nj

Theorem

Under mild conditions,

|φi − ψi| ≤ f
(
µ−i, σ−i, w(nI\{i}), R−i, n

max
−i

)
· ln(I − 1)

I − 1

where σ2
−i = 1

I−1
∑

j∈I\{i}(nj −µ−i)2, R−i := maxj∈I\{i} |nj −µ−i|, and
nmax

−i := maxj∈I\{i} nj .

7
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DU-Shapley vs Monte Carlo based methods

- The number of permutations T s.t. P(|φi(w) − φ̂i(w)| ≤ ε) ≥ 1 − δ is,

Tperm(ε, δ) = 2r2
uI

ε2 log
(

2I
δ

)
, ru := max

S1,S2⊆I
{u(S1) − u(S2)}.

Figure: Monte Carlo’s expected error for limited sampling budget (T = I) versus
DU-Shapley’s expected bias. For each value of I, we drew 100 times the data points of
each player from U([nmax]), with (left) nmax = 102, (center) nmax = 103, and (right)
nmax = 104.
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DU-Shapley vs Monte Carlo based methods (2)
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Figure: DU-Shapley vs MC-based approximations on synthetic datasets. Constant number
of utility function evaluations equal to I, illustrated by the vertical black line, From left to
right, (top) I = 10, I = 20 and I = 30, (bottom) I = 60, I = 100 and I = 150. Dataset
size drawn from the Uniform distribution U({20, . . . , 103}).
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Heterogeneous case

- Assumption: Take p(i)
X = N(0, σiη

2Id)

- There is no close formula for u(S) anymore. However, for x ∼ N(0, ηId),

u(S) ≈ dσ2
ε

d+ 1 − q(nS , σS) , q(nS , σS) =


(∑

i∈S
σini

)2

∑
i∈S

σ2
i ni


- The Shapley value becomes,

φi(u) = EK∼U([I−1}])

[
E

S∼U
([

2I\{i}
K

])[
u(S ∪ {i}) − u(S)

]]
u(S ∪ {i}) − u(S) = dσ2

ε

d+ 1 − q(nS∪{i}, σS∪{i}) − dσ2
ε

d+ 1 − q(nS , σS)

- What is the distribution of (q(nS∪{i}, σS∪{i}))S⊆I\{i} and (q(nS , σS))S⊆I\{i} ?
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Heterogeneous case (2)

Figure: (left) I = 10, (middle) I = 50, (right) I = 500. We considered 104 samples for
each random variable, a number of data points per player drawn from U([100]), and
σi ∼ U([10]).
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DU-Shapley vs Monte Carlo based methods

Figure: DU-Shapley vs MC-based approximations on synthetic datasets. Dataset size
drawn from the Uniform distribution U({10, . . . , 103}) and variance per player from
U({10−3, . . . , 10}).
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Conclusions & Further work

Conclusions

- We have an efficient Shapley value approximation (linear instead of exponential)

- We have theoretical guarantees for our method

- Our method outperforms state of the art Monte Carlo approximation schemes

Further work

- Extend the method to more general heterogeneous settings

- Design mechanism to incentivise the data-sharing
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