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DATA-SET VALUATION

Data-set valuation
Quantify incremental contribution of
players by sharing their data-sets with
other players towards solving some ML task
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- First step towards incentivise parties to share data
- Cooperative game theory fits this framework

- One of the most studied solution concept is the Shapley value
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MODEL - LINEAR REGRESSION

- Set of players Z = {1, ..., I}

- Player i has a data-set Ploverl @
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MODEL - LINEAR REGRESSION

- Set of players Z = {1,...,I}

- Player i has a data-set
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- Linear regression
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MODEL - LINEAR REGRESSION

- Set of players Z = {1,...,I}
- Player i has a data-set
D; = {(=", y")}iepm
- Linear regression
Yi = Xi0 +ni,mi ~ N(On,, 710,
xv(:” Npg?, for any j € [n;], and &; ~ p.

where 0 € R? is a ground-truth parameter

- Value function v : 27 - R ,¥S C T,
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u(S) = v({Di}ics) = ~E {(xTe - :Jésf]

where s = (X4 Xs) "' X4 Ys is the maximum likelihood estimator and  ~ p'&

test
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SHAPLEY VALUE

- Classical solution concept in cooperative game theory
- Average marginal contribution of player i to all subcoalitions S C 7 \ {i}

- Given u : 27 — R, the Shapley value of player i is

P =1 3 (1) [u(S U {i}) — u(S)]

SCT\{i} \IS]

1 - . ™
=4 > [uPru{i}) - u(Ph)]

" ren(z)

- The intractability of the Shapley value obliges to study approximation schemes

- proposed a Monte Carlo approximation
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HOMOGENEOUS CASE

- Assumption: Take p()? =px,Viel

- Whenever x ~ px, it holds,

u(S) = —E {(xTH - xTéS)Q] = Cde%nS =w(ns)

where ns =3 n;
- Having this in mind, the Shapley value can be rewritten as,
@i(u) = @i(w) = Ex~u(r-1) [ESNU@QM)W(”S +ni) — w(ns)]]

- What is the distribution of (ns)scz\{i}?



HOMOGENEOUS CASE (2)

- s

k()

U~ U(0,1)

Empirical probability density
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Figure: (left) I = 10, (middle) I = 50, (right) I = 500. 10° samples for each random
variable and a number of data points per player drawn from U([100]). s, stands for
ns, normalised.
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Empirical probability density
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Figure: (left) I = 10, (middle) I = 50, (right) I = 500. 10° samples for each random
variable and a number of data points per player drawn from U([100]). s, stands for
ngs, normalised.

Let ns, i= g ny, where S ~ U2 ") and K ~ U([T - 1]). Then,

UrTe I—o0

2 jer\iiy

U([o,1])




OUTLINE

Homogeneous DU-Shapley
Theoretical guarantees
Numerical results



Di1SCRETE UNIFORM SHAPLEY

- Discrete uniform Shapley
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Di1SCRETE UNIFORM SHAPLEY

- Discrete uniform Shapley
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THEOREM

Under mild conditions,

maxy In(L —1
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where 02, = 125 > ey (M —pi—i)%, R := maxjer\ iy [nj — p—i|, and
nTT = max e\ {i} 1y
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DU-SHAPLEY VS MONTE CARLO BASED METHODS

- The number of permutations T s.t. P(|p;(w) — @i(w)| <e) >1—4is,
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DU-SHAPLEY VS MONTE CARLO BASED METHODS
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Figure: Monte Carlo's expected error for limited sampling budget (7" = I) versus
DU-Shapley’s expected bias. For each value of I, we drew 100 times the data points of
each player from U([nmax]), with (left) nmax = 102, (center) nmax = 103, and (right)
NMmax = 10



DU-SHAPLEY VS MONTE CARLO BASED METHODS (2)
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Figure: DU-Shapley vs MC-based approximations on synthetic datasets. Constant number
of utility function evaluations equal to I, illustrated by the vertical black line, From left to
right, (top) I =10, I =20 and I = 30, (bottom) I =60, I = 100 and I = 150. Dataset
size drawn from the Uniform distribution U({20,...,103}).
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HETEROGENEOUS CASE

- Assumption: Take pg? = N(0, 0:1°14)
- There is no close formula for u(S) anymore. However, for  ~ N(0, nlq),
2
oin;
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~ d—i—l—q(ns,as)’ Q(nS7US): 20_12”1
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u(S)

- The Shapley value becomes,

pi(u) = Ex~ur-1y) |E,

u([229]) [w(SU{i}) — u(S)]

2 2
do < das

w(SU{i}) —u(S) = ey g rgymags Bl ey g ey

- What is the distribution of (¢(nsuf}, osuit))scz\{i and (q(ns,os))scz\ iy ?



HETEROGENEOUS CASE (2)
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Figure: (left) I = 10, (middle) I = 50, (right) I = 500. We considered 10* samples for
each random variable, a number of data points per player drawn from U([100]), and
i ~ U([10]).
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DU-SHAPLEY VS MONTE CARLO BASED METHODS
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Figure: DU-Shapley vs MC-based approximations on synthetic datasets. Dataset size

drawn from the Uniform distribution U({10,...,103}) and variance per player from
U({1073,...,10}).
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Conclusions
- We have an efficient Shapley value approximation (linear instead of exponential)
- We have theoretical guarantees for our method

- Our method outperforms state of the art Monte Carlo approximation schemes



CONCLUSIONS & FURTHER WORK

Conclusions
- We have an efficient Shapley value approximation (linear instead of exponential)
- We have theoretical guarantees for our method

- Our method outperforms state of the art Monte Carlo approximation schemes

Further work
- Extend the method to more general heterogeneous settings

- Design mechanism to incentivise the data-sharing
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