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Introduction

Motivation

We study opinion dynamics in a network of agents: how do opinions
evolve over time?

Core question in economic theory: opinion aggregation started with
Condorcet’s jury (1785).

Applications in consensus estimation, optimal belief-manipulation,
preventing disinformation, estimating the impact of lobbying strategies, ...

Stylized facts: increasing network density and scale, unverifiable
information, large spread of marginal opinions, limits to rationality.
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Introduction

Summary

Contributions of this paper:

We propose a new model of non-Bayesian belief exchange;

We prove that under general conditions, beliefs converge;

We characterize conditions that ensure a consensus emerges;

We show that in general, this consensus is a full-support random
variable;

We provide characterization elements for this limit belief.

Next step: testing in the lab!
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Introduction

Stochastic Opinion Formation

Key assumption: communication is stochastic. Agents may spread
marginal beliefs as long as they put positive probability on them.

Agents communicate by iteratively drawing possible states of the world
according to their beliefs → no metacognition.

We use reinforcement learning techniques by modeling the opinion
dynamics as an interacting urn system.

Our goal → study the dynamics of beliefs: convergence, consensus,
nature of the limit beliefs.
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Introduction
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The Model

Model Premises

Our model is defined by:

A finite set of agents V = {1, . . . ,N};
A fixed, undirected and non-weighted communication network
G = (V ,E );

A binary state of the world θ;

Each agent holds a prior belief on θ (cf. next slide).

Contrary to Condorcet, the existence of a ”true” value for θ is not
important: we focus on beliefs dynamics.

We consider pure informational dynamics → this is not a game per se, no
payoffs, no strategies.
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The Model

Beliefs and Reinforcement Learning

Each agent’s belief is modeled as an urn containing red and blue balls
representing the two possible values of θ.

Condorcet initialization: at t = 0 one red w.p. α and one blue w.p.
1− α

Most results hold independently of prior beliefs → α mostly serve
comparative statics.

No additional information and/or feedback after the initialization.
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The Model

Communication process

Communication proceeds in discrete time → at each time t ≥ 1:

1 Every agent draws a ball from her urn with replacement.

2 Agents observe their neighbors draws.

3 Agents reinforce their beliefs: add one ball for each observed draw.

Beliefs dynamics: do they converge? Do they coincide in the limit? Can
we say anything about this limit?
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The Model

Example: t = 1

Consider 3 agents connected in a line with the following initial
compositions. At time t = 1, we have:
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Convergence and Consensus

Convergence

We first prove that beliefs converge almost-surely.

Theorem

For every communication network and every initial composition of urns,
proportions in each urn converge almost-surely.

Why? Stochastic approximation: over time, beliefs approach trajectories
of a continuous-time ODE. In the limit, proportions converge with
probability 1 to a bounded invariant set of the ODE.
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Convergence and Consensus

Consensus

We show a consensus emerges in connected components.

Theorem

For every initial composition of urns, if the communication network is
connected, then the limit proportions in every urn are equal almost-surely.

Why? Spectral properties of the network’s Laplacian matrix. We
characterize the unique stable invariant set of the ODE as the set of
vectors with identical coordinates.

Conversely, limit proportions within each subnetwork are all equal.
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Convergence and Consensus

Full support

The limit belief is not deterministic but a full-support random variable:

Theorem

For any communication network and any α ∈ (0, 1), the limit belief is a
non-trivial random variable with full support over [0, 1].

Why? Any invariant point p of the ODE is attainable in finite time with
positive probability. We then show that p must belong to the support of
the limit distribution.
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Convergence and Consensus

A few comments

The average proportion of a color in the limit belief is increasing with the
number of balls of said color in the initial composition of urns (more on
that in a few slides).

Yet, one single ball of a given color in a single urn can overturn the limit
belief: with at least one red ball, for any x ∈ (0, 1), the probability that
the limit proportion of red is greater than x is strictly positive.

Key difference with predictions from usual models: we do not converge to
a point anymore. It leaves room for butterfly effect.
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Computational characterization

Beta distribution

We simulate the process on star, complete and k-regular networks and fit
candidate distributions.

Figure: Beta and normal fits on a star network with α = 0.75, 5000 obs.

Strong evidence of a Beta distribution.E. Macault, CREST-BETA Econ. Stochastic Consensus X-OMI, Sept. 21st 2023 21 / 28



Computational characterization

Average Limit Belief

We observe that the empirical average of the limit belief is equal to α for
every network topology.

Theorem

For any value of α, if the communication network is regular, then the
conditional expectation of the limit belief ex-ante is equal to α, proof for
the regular case.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Av. 0.097 0.20 0.29 0.40 0.49 0.60 0.69 0.79 0.89

Table: Empirical mean in a star network of size N = 50 (7500 obs.).

On average, proportions remain the same. But the variance is non-zero
and depends on the network topology.
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Experimental Evaluation (on-going)

On-going Experimental Project

A very recent thread of experimental papers tested non-Bayesian
(DeGroot) vs. Bayesian models in the lab, e.g. Chandrasekhar et al.
(2020), DeFilippis et al. (2022), and support boundedly rational models.

Molavi et al. (2017) provides axiomatization of DeGroot and Molavi
(2022) offers test procedures to identify bounded rationality.

Building on these references, we are currently working on building and
experiment to assess how our model performs against DeGroot’s.
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Conclusion

We build a stochastic model of opinion exchange in networks.

We show that we obtain suitable properties (convergence, consensus)
under weaker conditions than standard models.

We further show that the limit belief is a full-support random variable: the
model accounts for possible large spread of marginal beliefs.

We show that the expected proportion of ”wrong beliefs” remains a
constant independent from the network structure.

These two results strongly move away from usual non-Bayesian models.
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Conclusion

On-going projects opened by this paper:

Complete analytical characterization → exploiting probability coupling
theory and Bayesian statistics results;

Foundation of the belief-updating rule → what makes a good model
of bounded rationality?;

Extensions → metacognition and generalization of näıve learning;

Building block in games of strategic belief manipulation → modelling
large-scale informational phenomena;

Experimental evaluation of the model → implementation in applied
settings.
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Notations

Denote by:

di agent i ’s number of neighbors and N(i) her neighborhood,
d = mini di ;

Rt
i and Bt

i respectively the numbers of red and blue balls in player i ’s
urn at time t;

Z t
i = Rt

i /(Rt
i +Bt

i ) be the proportion of red balls in urn i after step t;

X t
i be the indicator variable of a red draw for agent i at time t;

Ft be the sigma-field generated by the realizations of (X k), k ≤ t
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Convergence

Sketch of proof

We derive the following dynamics:
Rt+1
i = Rt

i +
∑

j∈N(i) X
t+1
j

Bt+1
i = Bt

i + di −
∑

j∈N(i) X
t+1
j

Rt+1
i + Bt+1

i = 1 + di (t + 1)

From which we get:

Z t+1
i = Z t

i +
− diZ

t
i +

∑
j∈N(i) X

t+1
j

1 + di (t + 1)
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Convergence

Sketch of proof

Using E
[
X t+1
i |Ft

]
= Z t

i , we write:

Z t+1
i −Z t

i =

1 + d(t + 1)

1 + di (t + 1)

[
−diZ t

i +
∑

j∈N(i) Z
t
j +

∑
j∈N(i) X

t+1
j − E

[∑
j∈N(i) X

t+1
j |Ft

]]
1 + di (t + 1)

⇔ Z t+1 − Z t = γt
[
f t(Z t) + ut

]
We identify a stochastic approximation algorithm.
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Convergence

Sketch of proof

Observe the following:

1 We have

{∑∞
t=1 γ

t =∞∑∞
t=1(γt)2 <∞

2 For every i in N, the sequence (uti ) is a sequence of bounded random
variables with zero mean → mart. diff. noise.

3 The maps f ti are Lipschitz continuous and measurable with respect to
Ft and uniformly continuous in t for t ≥ 1,

4 For any z ∈ [0, 1]N and any k ∈ N∗,

lim
s→∞

∣∣∣∣∣
s+k∑
t=s

γt
[
f ti (z)− f̄i (z)

]∣∣∣∣∣→ 0

with f̄i (z) = d
di

∑
j∈N(i) zj − dizi .
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Convergence

Sketch of proof

Theorem (Kushner & Yin (2003))

If observations 1-4 hold and (Z t) is bounded with probability one, then for
almost all ω, the limits Z̄ (ω) of convergent subsequences of (Z t(ω)) are
trajectories of

ż ti = f̄ (z t) (1)

in some bounded invariant set and (Z t(ω)) converges to this invariant set.

→ Z t converges almost-surely for any initial vector Z 0 and any graph G .
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Consensus

Sketch of proof

We know that Z t converges along trajectories of

ż ti =
d

di

∑
j∈N(i)

z tj − diz
t
i

As 1
N ≤

d
di
≤ 1, stable points belong to the set of stable points of

ż ti =
∑

j∈N(i)

z tj − diz
t
i

Or, in matrix form:

ż t = −Lz t
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Consensus

Sketch of Proof

We have that L = D − A with D the diagonal matrix of degrees and A the
adjacency matrix of G .

In graph theory, it is refered to as the Laplacian matrix of G . It is always
positive and semi-definite.

Additionally, the dimension of its nullspace if equal to the number of
connected components of G → if G is connected, this dimension is 1.

As the sum of line entries are all equal to zero, it is characterized by the
eigenvector (1, . . . , 1).
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Consensus

Sketch of Proof

We conclude that trajectories of the ODE converge to the nullspace of −L,
which is Lyapunov stable as −L is negative and characterized by the
eigenvector (1, . . . , 1).

In other terms, for any initial condition, the sequence of proportions
converges to a stable consensus.

Note that if G is not connected, then this result applies within every
connected component of G (even for a isolated agent).
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Full Support

Sketch of proof

The proof rests on the concept of attainability from Benäım (1999).

Definition

A subset I is attainable if for every fixed T ≥ 0 there exists t ≥ T such
that

P
(
Z t ∈ I

)
> 0.

Attainability rules out limit points that would be out of reach for the
process.

E. Macault, CREST-BETA Econ. Stochastic Consensus X-OMI, Sept. 21st 2023 12 / 17



Full Support

Sketch of proof

We adapt the following theorem from Renlund 2010:

Lemma

Let p be a stable zero of f̄ . If every neighborhood of p is attainable then
p ∈ Supp(Z̄ ).

For every ε > 0, any z ∈ [0, 1] and every urns composition Z t with balls of
the two colors, there exists a finite sequence of draws with positive
probability such that for any i ∈ {1, . . . ,N}, Zi is at distance at most ε
from z (because Z t+1 − Z t is of the order 1/t).
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Average Belief

k-regular graphs

Theorem

If the graph G is k-regular (every node has exactly k neighbors) and
connected, then E

[
Z̄ |Z 0

]
= α.
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Average Belief

k-regular graphs

Consider a k-regular graph and let Mt =
∑

i∈N Z t
i ,

Mt − E [Mt+1|Ft ] = E

[
N∑
i=1

Z t+1
i − Z t

i |Ft

]
=

N∑
i=1

− diZ
t
i +

∑
j∈N(i) Z

t
j

di (t + 1) + 1

Mt − E [Mt+1|Ft ] =
N∑
i=1

Z t
i

 ∑
j∈N(i)

1

dj(t + 1) + 1
−

1

di (t + 1) + 1
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Average Belief

k-regular graphs

If G is k-regular, di = k for every i , hence

Mt − E [Mt+1|Ft ] =
N∑
i=1

Z t
i

 ∑
j∈N(i)

1

k(t + 1) + 1
−

1

k(t + 1) + 1

 = 0

Which proves that (Mt) is a martingale. In particular, we have that
E
[
Mt |Z 0

]
= Nα for every t hence E

[
Z̄ |Z 0

]
= α.
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